Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Jun 04 2016 06:59:57
%S 1,2,4,33,5,46,6,2,2,3,2,2,6
%N Concatenate the digits of the natural numbers from 1 to n in order to build up two numbers x and y that minimize the ratio x/y > 0, an integer (leading zeros not admitted).
%C For n=8 and n=9 we have 12 possible different fractions:
%C n=8 -> 3456/1728, 3528/1764, 3564/1782, 3654/1827, 4356/2178, 4716/2358, 5436/2718, 5634/2817, 7128/3564, 7164/3582, 8352/4176, 8712/4356.
%C n=9 -> 13458/6729, 13584/6792, 13854/6927, 14538/7269, 14586/7293, 14658/7329, 15384/7692, 15846/7923, 15864/7932, 18534/9267, 18546/9273, 18654/9327. - _Arie Groeneveld_, Nov 25 2011
%C Examples for n=10..13: a(10) = 3 = 161427/53809, a(11) = 2 = 1141826/570913, a(12) = 2 = 11418226/5709113, and a(13) = 6 = 114312678/19052113. - _Giovanni Resta_, May 31 2016
%e Starting with a(1)=1 we have a(2)=2/1=2, a(3)=12/3=4, a(4)=132/4=33, a(5)=215/43=5, a(6)= 2346/51= 46, a(7)= 3426/571=6, a(8)= 3456/1728 = 2, a(9)= 13458/6729=2.
%p with(combinat,permute);
%p P:=proc(i)
%p local a,c,d,j,k,m,ok,n,t,v,x,y;
%p v:=[1,2]; t:=2; lprint(1,1); lprint(2,2);
%p for n from 3 to i do
%p c:=n;
%p for j from 1 to floor(1+evalf(log10(n))) do
%p t:=t+1; v:=[op(v),c-10*trunc(c/10)]; c:=trunc(c/10);
%p od;
%p if (t mod 2)=1 then a:=(t+1)/2; else a:=t/2; fi;
%p c:=permute(v); d:=nops(c); c:=op(c); m:=10^13; ok:=0;
%p while ok=0 do
%p for j from 1 to d do
%p x:=0; for k from 1 to a do x:=10*x+c[j][k]; od;
%p y:=0; for k from a+1 to t do y:=10*y+c[j][k]; od;
%p if x>y then if trunc(x/y)=x/y then ok:=1; if x/y<m then m:=x/y; if m=2 then break; fi; fi; fi; fi;
%p od;
%p if ok=0 then a:=a+1; fi;
%p od;
%p lprint(n,m);
%p od;
%p end:
%p P(10);
%K nonn,base,hard,more
%O 1,2
%A _Paolo P. Lava_, Nov 25 2011
%E a(5) corrected by _Arie Groeneveld_, Nov 25 2011
%E a(6)-a(9) from _Claudio Meller_, Nov 25 2011
%E a(10)-a(13) from _Giovanni Resta_, May 31 2016