login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200938
Values d for infinite sequence x^3-y^2 = d with increasing coefficient r=sqrt(x)/|d| or family of solutions Mordell curve with extension sqrt(2).
3
648, -5400, 15336, -20088, 100872, -105624, 599400, -604152, 3505032, -3509784, 20440296, -20445048, 119146248, -119151000, 694446696, -694451448, 4047543432, -4047548184, 23590823400, -23590828152, 137497406472, -137497411224, 801393624936, -801393629688
OFFSET
0,1
COMMENTS
For x values see A200936.
For y values see A200937.
This sequence is equivalent of A200218, but A200218 was for quadratic field with extension sqrt(5).
All numbers in this sequence are of the form 216*(4k+3).
When indices n are even d=a(n) are positive, when n is odd d=a(n) are negative.
FORMULA
a(n) = A200936(n)^3 - A200937(n)^2.
a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) - a(n-4) + a(n-5).
G.f.: 216*(3 - 28*z + 78*z^2 + 4*z^3 - 13*z^4)/((1 - z)*(1 + 2*z - z^2) *(1 - 2*z - z^2)).
E.g.f.: 216*(cosh(x)*(14*cosh(sqrt(2)*x) - 4*sqrt(2)*sinh(sqrt(2)*x) - 11) - sinh(x)*(6*cosh(sqrt(2)*x) - 10*sqrt(2)*sinh(sqrt(2)*x) + 11)). - Stefano Spezia, Oct 03 2022
MATHEMATICA
uu = {648, -5400, 15336, -20088, 100872}; a1 = aa[[1]]; a2 = aa[[2]]; a3 = aa[[3]]; a4 = aa[[4]]; a5 = aa[[5]]; Do[an = a5 + 6 a4 - 6 a3 - a2 + a1; a1 = a2; a2 = a3; a3 = a4; a4 = a5; a5 = an; AppendTo[uu, an], {nn, 1, 20}]; uu
PROG
(PARI) my(x='x+O('x^30)); Vec(216*(3-28*x+78*x^2+4*x^3-13*x^4)/((1-x)*(1+2*x-x^2)*(1-2*x-x^2))) \\ G. C. Greubel, Aug 18 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(216*(3-28*x+78*x^2+4*x^3-13*x^4)/((1-x)*(1+2*x-x^2)*(1-2*x-x^2)))); // G. C. Greubel, Aug 18 2018
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Artur Jasinski, Nov 25 2011
STATUS
approved