OFFSET
1,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..390
FORMULA
a(n) = Sum_{j=0..n} 2^j*(2*n-j)^(n-1)*(-1)^(n-j)*binomial(n,j), n > 0, a(0)=0.
Lim sup n->infinity (|a(n)|/n!)^(1/n) = abs(1/r) = 2.35574803651010217..., where r = 0.14939557933379789490 - 0.39733586552717789127*i is the complex root of the equation sqrt((r-2)*r) + 2*log(1/2 - sqrt((r-2)*r)/(2*r)) = 1+r, and i is the imaginary unit. - Vaclav Kotesovec, Jan 26 2014
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[-(x/(E^x*(-2 + E^x))), {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 26 2014 *)
Table[Sum[2^j*(2*n-j)^(n-1)*(-1)^(n-j)*Binomial[n, j], {j, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec after Vladimir Kruchinin, Jan 26 2014 *)
PROG
(Maxima)
a(n):=(sum(2^j*(2*n-j)^(n-1)*(-1)^(n-j)*binomial(n, j), j, 0, n));
CROSSREFS
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Nov 23 2011
STATUS
approved