login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200904 E.g.f. A(x) satisfies: A(x) = x*(2*exp(A(x)) - exp(2*A(x))). 2
1, 0, -6, -24, 170, 3420, 7126, -612528, -9539982, 84591300, 5635854158, 50835366648, -2827700267990, -99260514667860, 438301096424070, 118700423262570144, 2500018105640527586, -100537942668123244140, -6930391127610546125378, -31482610140761483476920 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 1..390

FORMULA

a(n) = Sum_{j=0..n} 2^j*(2*n-j)^(n-1)*(-1)^(n-j)*binomial(n,j), n > 0, a(0)=0.

Lim sup n->infinity (|a(n)|/n!)^(1/n) = abs(1/r) = 2.35574803651010217..., where r = 0.14939557933379789490 - 0.39733586552717789127*i is the complex root of the equation sqrt((r-2)*r) + 2*log(1/2 - sqrt((r-2)*r)/(2*r)) = 1+r, and i is the imaginary unit. - Vaclav Kotesovec, Jan 26 2014

MATHEMATICA

Rest[CoefficientList[InverseSeries[Series[-(x/(E^x*(-2 + E^x))), {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 26 2014 *)

Table[Sum[2^j*(2*n-j)^(n-1)*(-1)^(n-j)*Binomial[n, j], {j, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec after Vladimir Kruchinin, Jan 26 2014 *)

PROG

(Maxima)

a(n):=(sum(2^j*(2*n-j)^(n-1)*(-1)^(n-j)*binomial(n, j), j, 0, n));

CROSSREFS

Cf. A236466.

Sequence in context: A232688 A221980 A225827 * A293488 A038033 A064049

Adjacent sequences:  A200901 A200902 A200903 * A200905 A200906 A200907

KEYWORD

sign

AUTHOR

Vladimir Kruchinin, Nov 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 22:53 EDT 2019. Contains 327147 sequences. (Running on oeis4.)