Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Mar 02 2018 14:14:00
%S 2,15,178,2614,40148,622645,9676364,150442627,2339207390,36372631268,
%T 565564863676,8794081340271,136740955582530,2126212947243743,
%U 33060918081784912,514070948321926226,7993393871925768124
%N Number of n X 2 0..3 arrays with values 0..3 introduced in row major order and each element equal to no more than two horizontal and vertical neighbors.
%C Column 2 of A200801.
%H R. H. Hardin, <a href="/A200795/b200795.txt">Table of n, a(n) for n = 1..200</a>
%F Empirical: a(n) = 18*a(n-1) - 35*a(n-2) - 48*a(n-3) - 11*a(n-4) + 90*a(n-5) + 36*a(n-6) - 12*a(n-7) - 36*a(n-8) for n>10.
%F Empirical g.f.: x*(1 - x)*(2 - 19*x - 41*x^2 - 10*x^3 + 58*x^4 + 58*x^5 - 28*x^7 - 12*x^8) / ((1 - 3*x - x^2 + 2*x^4)*(1 - 15*x - 9*x^2 + 6*x^3 + 18*x^4)). - _Colin Barker_, Mar 02 2018
%e Some solutions for n=3:
%e ..0..1....0..1....0..0....0..1....0..1....0..1....0..1....0..1....0..1....0..1
%e ..2..1....1..2....1..0....1..1....2..3....1..1....2..0....2..1....2..0....2..3
%e ..3..2....3..2....0..0....1..0....1..1....1..2....3..3....3..1....0..0....1..0
%Y Cf. A200801.
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 22 2011