login
A200763
T(n,k)=Number of 0..k arrays x(0..n-1) of n elements with nondecreasing average value
9
2, 3, 3, 4, 6, 4, 5, 10, 11, 5, 6, 15, 23, 19, 6, 7, 21, 42, 51, 32, 7, 8, 28, 69, 113, 110, 53, 8, 9, 36, 106, 219, 297, 233, 87, 9, 10, 45, 154, 388, 679, 767, 488, 142, 10, 11, 55, 215, 638, 1387, 2070, 1957, 1013, 231, 11, 12, 66, 290, 995, 2583, 4874, 6235, 4947, 2088
OFFSET
1,1
COMMENTS
Table starts
..2...3....4.....5......6......7.......8.......9.......10.......11........12
..3...6...10....15.....21.....28......36......45.......55.......66........78
..4..11...23....42.....69....106.....154.....215......290......381.......489
..5..19...51...113....219....388.....638.....995.....1483.....2133......2975
..6..32..110...297....679...1387....2583....4500.....7410....11669.....17687
..7..53..233...767...2070...4874...10283...20012....36412....62780....103412
..8..87..488..1957...6235..16919...40437...87914...176767...333702....597390
..9.142.1013..4947..18608..58198..157577..382720...850389..1757813...3420112
.10.231.2088.12419..55148.198807..609826.1654657..4062796..9195619..19445435
.11.375.4278.31006.162532.675372.2347039.7114665.19304047.47842607.109955586
LINKS
EXAMPLE
Some solutions for n=8 k=8
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..2....1....1....4....3....3....0....3....2....3....2....5....3....1....0....2
..2....7....6....2....1....2....3....2....1....4....7....3....4....5....3....6
..2....3....4....7....7....7....5....6....1....6....3....3....5....2....8....4
..4....7....6....6....4....4....4....5....1....6....4....3....3....7....3....4
..7....4....8....4....5....6....2....4....6....7....6....8....8....7....7....6
..5....5....5....6....6....5....4....7....6....4....4....4....7....4....6....8
CROSSREFS
Column 2 is A001911(n+1)
Column 7 is A200707
Row 2 is A000217(n+1)
Row 3 is A019298(n+1)
Sequence in context: A225273 A014410 A180986 * A203291 A220053 A320509
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Nov 22 2011
STATUS
approved