login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = 1 + (x-x^2)*A(x)^3.
10

%I #53 Jul 15 2024 10:37:29

%S 1,1,2,6,22,89,381,1694,7744,36168,171831,827814,4034589,19857262,

%T 98555324,492710856,2478897620,12541604830,63768192378,325674039636,

%U 1669922290311,8593644472017,44369362778645,229767801472366,1193126351099007,6211253430642091

%N G.f. satisfies: A(x) = 1 + (x-x^2)*A(x)^3.

%C S. Corteel et al. ask whether this sequence also gives the number of inversion sequences avoiding the pattern 102. - _Michel Marcus_, Oct 26 2015

%C Concerning the previous comment: This was proved by Mansour and Shattuck. - _Eric M. Schmidt_, Jul 18 2017

%H G. C. Greubel, <a href="/A200753/b200753.txt">Table of n, a(n) for n = 0..1000</a>

%H Beáta Bényi, Toufik Mansour, and José L. Ramírez, <a href="https://arxiv.org/abs/2309.06518">Pattern Avoidance in Weak Ascent Sequences</a>, arXiv:2309.06518 [math.CO], 2023.

%H Sylvie Corteel, Megan A. Martinez, Carla D. Savage, and Michael Weselcouch, <a href="http://arxiv.org/abs/1510.05434">Patterns in Inversion Sequences I</a>, arXiv:1510.05434 [math.CO], 2015.

%H Toufik Mansour and Mark Shattuck, <a href="https://doi.org/10.1515/puma-2015-0016">Pattern avoidance in inversion sequences</a>, Pure Mathematics and Applications, 25(2):157-176, 2015.

%H Megan A. Martinez and Carla D. Savage, <a href="https://arxiv.org/abs/1609.08106">Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations</a>, arXiv:1609.08106 [math.CO], 2016.

%H Jay Pantone, <a href="https://arxiv.org/abs/2310.19632">The enumeration of inversion sequences avoiding the patterns 201 and 210</a>, arXiv:2310.19632 [math.CO], 2023.

%H Benjamin Testart, <a href="https://arxiv.org/abs/2407.07701">Completing the enumeration of inversion sequences avoiding one or two patterns of length 3</a>, arXiv:2407.07701 [math.CO], 2024. See p. 2.

%F a(n) = Sum_{k=0..[n/2]} (-1)^k * C(n-k, k) * C(3*(n-k), n-k) / (2*(n-k)+1).

%F G.f.: A(x) = G(x-x^2) where G(x) = 1 + x*G(x)^3 is the g.f. for A001764.

%F G.f.: A(x) = (1/x)*Series_Reversion( x*(1+x^2 + sqrt((1+x^2)^2 - 4*x))/2 ).

%F G.f.: A(x) = (1 - x^2*A(x)^3) / (1 - x*A(x)^2).

%F Conjecture: 2n*(2n+1)*a(n) -(13n-7)(3n-2)*a(n-1) +4(29n^2-87n+67)*a(n-2) +9(-15n^2+69n-80)*a(n-3) +6(3n-8)(3n-10)*a(n-4)=0. - _R. J. Mathar_, Nov 22 2011

%F Recurrence: 2*(n-1)*n*(2*n+1)*a(n) = (n-1)*(31*n^2 - 27*n + 6)*a(n-1) - 6*(9*n^3 - 27*n^2 + 22*n - 2)*a(n-2) + 3*n*(3*n-7)*(3*n-5)*a(n-3). - _Vaclav Kotesovec_, Aug 19 2013

%F a(n) ~ sqrt(18*sqrt(33)-66) * ((27+3*sqrt(33))/8)^n/(16*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Aug 19 2013

%e G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 22*x^4 + 89*x^5 + 381*x^6 + ...

%e Related expansion:

%e A(x)^3 = 1 + 3*x + 9*x^2 + 31*x^3 + 120*x^4 + 501*x^5 + 2195*x^6 + ...

%e where a(2) = 3 - 1; a(3) = 9 - 3; a(4) = 31 - 9; a(5) = 120 - 31; ...

%t Table[Sum[(-1)^k*Binomial[n-k,k]*Binomial[3*(n-k),n-k]/(2*(n-k)+1),{k,0,Floor[n/2]}],{n,0,20}] (* _Vaclav Kotesovec_, Aug 19 2013 *)

%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+(x-x^2)*A^3+x*O(x^n));polcoeff(A,n)}

%o (PARI) {a(n)=polcoeff((1/x)*serreverse( x*(1+x^2 + sqrt((1+x^2)^2 - 4*x +x^2*O(x^n)))/2 ),n)}

%o (PARI) {a(n)=sum(k=0,n\2,(-1)^k*binomial(n-k, k)*binomial(3*(n-k),n-k)/(2*(n-k)+1))}

%Y Cf. A001764, A200754.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Nov 21 2011