Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 19 2013 11:55:07
%S 1,1,4,17,84,453,2574,15185,92119,571022,3600981,23029021,149000790,
%T 973581692,6415198045,42580369370,284427460919,1910594331920,
%U 12898153658337,87461992473577,595455441375978,4068652368270955,27891991988552554,191783482751813061,1322319472577803761
%N G.f. satisfies: A(x) = (1 + x*A(x)^3) * (1 + x^2*A(x)).
%C More generally, for fixed parameters p and q, if F(x) satisfies:
%C F(x) = exp( Sum_{n>=1} x^n * F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^k * F(x)^(k*q)] ),
%C then F(x) = (1 + x*F(x)^(p+1))*(1 + x^2*F(x)^(p+q+1)).
%H Vaclav Kotesovec, <a href="/A200716/b200716.txt">Table of n, a(n) for n = 0..500</a>
%H Vaclav Kotesovec, <a href="/A200716/a200716.txt">Recurrence (of order 11)</a>
%F G.f. A(x) satisfies:
%F (1) A(x) = exp( Sum_{n>=1} x^n * A(x)^(2*n)/n * [Sum_{k=0..n} C(n,k)^2 * x^k / A(x)^(2*k)] ).
%F (2) A(x) = exp( Sum_{n>=1} x^n * A(x)^(2*n)/n * [(1-x/A(x)^2)^(2*n+1) * Sum_{k>=0} C(n+k,k)^2 * x^k/A(x)^(2*k)] ).
%F a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 7.342019160707096169... is the root of the equation -27 + 108*d^2 - 162*d^4 + 54*d^5 + 108*d^6 + 216*d^7 - 27*d^8 - 18*d^9 - 27*d^10 + 4*d^11 = 0 and c = 0.468554406193087607276981923311829947714908080994... - _Vaclav Kotesovec_, Sep 19 2013
%e G.f.: A(x) = 1 + x + 4*x^2 + 17*x^3 + 84*x^4 + 453*x^5 + 2574*x^6 +...
%e Related expansions:
%e A(x)^3 = 1 + 3*x + 15*x^2 + 76*x^3 + 414*x^4 + 2370*x^5 + 14047*x^6 +...
%e A(x)^4 = 1 + 4*x + 22*x^2 + 120*x^3 + 685*x^4 + 4048*x^5 + 24558*x^6 +...
%e where A(x) = 1 + x*A(x)^3 + x^2*A(x) + x^3*A(x)^4.
%e The logarithm of the g.f. A = A(x) equals the series:
%e log(A(x)) = (1 + x/A^2)*x*A^2 + (1 + 2^2*x/A^2 + x^2/A^4)*x^2*A^4/2 +
%e (1 + 3^2*x/A^2 + 3^2*x^2/A^4 + x^3/A^6)*x^3*A^6/3 +
%e (1 + 4^2*x/A^2 + 6^2*x^2/A^4 + 4^2*x^3/A^6 + x^4/A^8)*x^4*A^8/4 +
%e (1 + 5^2*x/A^2 + 10^2*x^2/A^4 + 10^2*x^3/A^6 + 5^2*x^4/A^8 + x^5/A^10)*x^5*A^10/5 + ...
%t nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=1; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1 + x*AGF^3) * (1 + x^2*AGF) - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* _Vaclav Kotesovec_, Sep 19 2013 *)
%o (PARI) {a(n)=local(p=2,q=-2,A=1+x);for(i=1,n,A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n));polcoeff(A,n)}
%o (PARI) {a(n)=local(p=2,q=-2,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0,m,binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
%o (PARI) {a(n)=local(p=2,q=-2,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
%Y Cf. A200717, A200718, A200719, A200074, A200075, A199874, A199876, A199877, A198951, A198953, A198957, A192415, A198888, A036765.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Nov 21 2011