login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A173862.
4

%I #31 Sep 08 2022 08:46:00

%S 1,2,3,5,7,9,13,17,21,29,37,45,61,77,93,125,157,189,253,317,381,509,

%T 637,765,1021,1277,1533,2045,2557,3069,4093,5117,6141,8189,10237,

%U 12285,16381,20477,24573,32765,40957,49149,65533,81917,98301,131069,163837,196605

%N Partial sums of A173862.

%C Partial sums of powers of 2 repeated 3 times.

%H Vincenzo Librandi, <a href="/A200672/b200672.txt">Table of n, a(n) for n = 1..1000</a>

%H Shatalov A. A, <a href="http://www.world-science.ru/euro/119-20216">The Cupola Algorithm Data And The Modulation-37 The Natural Sciences Aspect And The Using For Analysis Of Ancient Layouts</a>, European Journal Of Natural History, 2007 No. 1, p. 35.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,2,-2).

%F G.f.: x*(1+x+x^2) / ( (x-1)*(2*x^3-1) ). - _R. J. Mathar_, Nov 28 2011

%F a(3*n) = 3*(2^n-1) = 3*A000225(n). - _Philippe Deléham_, Mar 13 2013

%F a(n) = 2*a(n-3) + 3 for n > 3. - _Yuchun Ji_, Nov 16 2018

%e a(4) = 1+1+1+2 = 5.

%t CoefficientList[Series[(1 + x + x^2) / ((x - 1) (2 x^3 - 1)), {x, 0, 50}], x] (* _Vincenzo Librandi_, Nov 16 2018 *)

%t Accumulate[Flatten[Table[PadRight[{},3,2^n],{n,0,20}]]] (* or *) LinearRecurrence[ {1,0,2,-2},{1,2,3,5},60] (* _Harvey P. Dale_, Jul 12 2022 *)

%o (BASIC) for i=0 to 12 : for j=1 to 3 : s=s+2^i : print s : next j : next i

%o (Magma) I:=[1,2,3,5]; [n le 4 select I[n] else Self(n-1) + 2*Self(n-3)- 2*Self(n-4): n in [1..50]]; // _Vincenzo Librandi_, Nov 16 2018

%Y Cf. A027383, A173862.

%K nonn

%O 1,2

%A _Jeremy Gardiner_, Nov 20 2011