login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200669 Number of 0..n arrays x(0..4) of 5 elements with each no smaller than the sum of its three previous neighbors modulo (n+1) 1
12, 46, 175, 406, 938, 1813, 3414, 5682, 9412, 14443, 22009, 31668, 45374, 62393, 85516, 113373, 149874, 193249, 248539, 312886, 393096, 485530, 598634, 727155, 881972, 1056600, 1264221, 1495936, 1768186, 2070552, 2422168, 2809532, 3256044 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Row 5 of A200668

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = -2*a(n-1) -2*a(n-2) +5*a(n-4) +8*a(n-5) +7*a(n-6) +2*a(n-7) -5*a(n-8) -8*a(n-9) -9*a(n-10) -10*a(n-11) -9*a(n-12) -6*a(n-13) +4*a(n-14) +16*a(n-15) +20*a(n-16) +16*a(n-17) +4*a(n-18) -6*a(n-19) -9*a(n-20) -10*a(n-21) -9*a(n-22) -8*a(n-23) -5*a(n-24) +2*a(n-25) +7*a(n-26) +8*a(n-27) +5*a(n-28) -2*a(n-30) -2*a(n-31) -a(n-32)

EXAMPLE

Some solutions for n=6

..5....0....5....1....1....4....4....0....4....0....0....4....0....0....1....4

..5....3....5....1....2....6....5....1....5....5....4....6....3....1....6....5

..4....5....5....6....5....4....6....6....5....6....4....4....6....6....0....5

..6....6....1....2....5....5....3....1....1....4....2....0....6....2....1....0

..5....1....4....5....5....4....2....4....4....2....3....4....1....3....6....4

CROSSREFS

Sequence in context: A100183 A050490 A169881 * A197471 A159013 A022281

Adjacent sequences:  A200666 A200667 A200668 * A200670 A200671 A200672

KEYWORD

nonn

AUTHOR

R. H. Hardin Nov 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 07:31 EST 2022. Contains 350481 sequences. (Running on oeis4.)