Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #50 Apr 28 2024 11:39:19
%S 0,1,2,1,3,2,2,4,1,3,3,3,5,2,2,4,2,4,4,4,6,1,3,3,3,5,3,3,5,3,5,5,5,7,
%T 2,2,4,2,4,4,4,6,2,4,4,4,6,4,4,6,4,6,6,6,8,1,3,3,3,5,3,3,5,3,5,5,5,7,
%U 3,3,5,3,5,5,5,7,3,5,5,5,7,5,5,7,5,7,7
%N Number of 1's in the Stolarsky representation of n.
%C For the Stolarsky representation of n, see the C. Mongoven link.
%H Amiram Eldar, <a href="/A200649/b200649.txt">Table of n, a(n) for n = 1..10000</a>
%H Casey Mongoven, <a href="/A200648/a200648.txt">Description of Stolarsky Representations</a>.
%F a(n) = a(n - A130312(n-1)) + (A072649(n-1) - A072649(n - A130312(n-1) - 1)) mod 2 for n > 2 with a(1) = 0, a(2) = 1. - _Mikhail Kurkov_, Oct 19 2021 [verification needed]
%F a(n) = A200648(n) - A200650(n). - _Amiram Eldar_, Jul 07 2023
%e The Stolarsky representation of 19 is 11101. This has 4 1's. So a(19) = 4.
%t stol[n_] := stol[n] = If[n == 1, {}, If[n != Round[Round[n/GoldenRatio]*GoldenRatio], Join[stol[Floor[n/GoldenRatio^2] + 1], {0}], Join[stol[Round[n/GoldenRatio]], {1}]]];
%t a[n_] := Count[stol[n], 1]; Array[a, 100] (* _Amiram Eldar_, Jul 07 2023 *)
%o (PARI) stol(n) = {my(phi=quadgen(5)); if(n==1, [], if(n != round(round(n/phi)*phi), concat(stol(floor(n/phi^2) + 1), [0]), concat(stol(round(n/phi)), [1])));}
%o a(n) = vecsum(stol(n)); \\ _Amiram Eldar_, Jul 07 2023
%Y Cf. A072649, A130312, A135818, A200648, A200650, A200651.
%K nonn,base
%O 1,3
%A _Casey Mongoven_, Nov 19 2011
%E More terms from _Amiram Eldar_, Jul 07 2023