login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A200648
Length of Stolarsky representation of n.
9
1, 1, 2, 2, 3, 3, 3, 4, 3, 4, 4, 4, 5, 4, 4, 5, 4, 5, 5, 5, 6, 4, 5, 5, 5, 6, 5, 5, 6, 5, 6, 6, 6, 7, 5, 5, 6, 5, 6, 6, 6, 7, 5, 6, 6, 6, 7, 6, 6, 7, 6, 7, 7, 7, 8, 5, 6, 6, 6, 7, 6, 6, 7, 6, 7, 7, 7, 8, 6, 6, 7, 6, 7, 7, 7, 8, 6, 7, 7, 7, 8, 7, 7, 8, 7, 8, 8
OFFSET
1,3
COMMENTS
For the Stolarsky representation of n, see the C. Mongoven link.
FORMULA
a(n) = A200649(n) + A200650(n). - Michel Marcus, Mar 14 2023
EXAMPLE
The Stolarsky representation of 19 is 11101. This is of length 5. So a(19) = 5.
MATHEMATICA
stol[n_] := stol[n] = If[n == 1, {}, If[n != Round[Round[n/GoldenRatio]*GoldenRatio], Join[stol[Floor[n/GoldenRatio^2] + 1], {0}], Join[stol[Round[n/GoldenRatio]], {1}]]];
a[n_] := If[n == 1, 1, Length[stol[n]]]; Array[a, 100] (* Amiram Eldar, Jul 07 2023 *)
PROG
(PARI) stol(n) = {my(phi=quadgen(5)); if(n==1, [], if(n != round(round(n/phi)*phi), concat(stol(floor(n/phi^2) + 1), [0]), concat(stol(round(n/phi)), [1]))); }
a(n) = if(n == 1, 1, #stol(n)); \\ Amiram Eldar, Jul 07 2023
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Casey Mongoven, Nov 19 2011
EXTENSIONS
More terms from Amiram Eldar, Jul 07 2023
STATUS
approved