login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of dimension exponents of supercharacter of unipotent upper triangular matrices.
4

%I #39 Sep 08 2022 08:46:00

%S 0,1,10,73,490,3246,21814,150535,1072786,7915081,60512348,479371384,

%T 3932969516,33392961185,293143783762,2658128519225,24872012040510,

%U 239916007100054,2383444110867378,24363881751014383,256034413642582418,2763708806499744097

%N Sum of dimension exponents of supercharacter of unipotent upper triangular matrices.

%C Supercharacter theory of unipotent upper triangular matrices over a finite field F(2) is indexed by set partitions S(n) of {1,2,..., n} where a set partition P of {1,2,..., n} is a subset { (i,j) : 1 <= i < j <= n}

%C such that (i,j) in P implies (i,k),(k,j) are not in P for all i<l<j.

%C The dimension of the representation associated to the supercharacter indexed by P is given by 2^Dim(P) where Dim(P) = sum [ j-i , (i,j) in P ].

%C The sequence we have is a(n) = sum [ Dim(P) , P in S(n) ].

%H Vincenzo Librandi, <a href="/A200580/b200580.txt">Table of n, a(n) for n = 1..200</a>

%H M. Aguiar, C. Andre, C. Benedetti, N. Bergeron, Z. Chen, P. Diaconis, A. Hendrickson, S. Hsiao, I.M. Isaacs, A. Jedwab, K. Johnson, G. Karaali, A. Lauve, T. Le, S. Lewis, H. Li, K. Magaard, E. Marberg, J-C. Novelli, A. Pang, F. Saliola, L. Tevlin, J-Y. Thibon, N. Thiem, V. Venkateswaran, C.R. Vinroot, N. Yan and M. Zabrocki, <a href="http://arxiv.org/abs/1009.4134">Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras</a>, arXiv:1009.4134 [math.CO], 2010-2011.

%H C. André, <a href="https://doi.org/10.1006/jabr.2001.8734">Basic characters of the unitriangular group</a>, Journal of Algebra, 175 (1995), 287-319.

%H B. Chern, P. Diaconis, D. M. Kane and R. C. Rhoades, <a href="http://math.stanford.edu/~rhoades/FILES/setpartitions.pdf">Closed expressions for averages of set partition statistics</a>, 2013.

%H Mikhail Khovanov, Victor Ostrik and Yakov Kononov, <a href="https://arxiv.org/abs/2011.14758">Two-dimensional topological theories, rational functions and their tensor envelopes</a>, arXiv:2011.14758 [math.QA], 2020.

%F a(n) = -2*B(n+2) + (n+4)*B(n+1) where B(i) = Bell numbers A000110. [Chern et al.] - _N. J. A. Sloane_, Jun 10 2013 [for offset 2]

%F a(n) ~ n^3 * Bell(n) / LambertW(n)^2 * (1 - 2/LambertW(n)). - _Vaclav Kotesovec_, Jul 28 2021

%p b:=proc(n,k) option remember;

%p if n=1 and k=1 then RETURN(1) fi;

%p if k=1 then RETURN(b(n-1,n-1)) fi;

%p b(n,k-1)+b(n-1,k-1)

%p end:

%p a:=proc(n) local res,k;

%p res:=0;

%p for k to n-1 do res:=res+k*(n-k)*b(n,k) od;

%p res

%p end:

%p seq(a(n),n=1..34);

%t Table[-2 BellB[n+3] + (n+5) BellB[n+2], {n, 1, 30}] (* _Vincenzo Librandi_, Jul 16 2013 *)

%o (Magma) [-2*Bell(n+3)+(n+5)*Bell(n+2): n in [1..30]]; // _Vincenzo Librandi_, Jul 16 2013

%Y Cf. A011971 (sequence is computed from the Aitken's array b(n,k)

%Y a(n) = sum [ k*(n-k)*b(n,k), k=1..n-1 ]).

%Y Cf. A200660, A200673 (other statistics related to supercharacter theory).

%Y Cf. A000110, A226507.

%K nonn

%O 1,3

%A _Nantel Bergeron_, Nov 19 2011