Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Mar 31 2012 13:48:35
%S 0,0,4,4,0,0,4,4,5,0,4,4,24,5,4,4,0,15,4,4,75,0,4,4,0,0,4,4,5,39,4,4,
%T 15,5,4,4,24,35,4,4,175,31,4,4,0,39,4,4,5,0,4,4,35,5,4,4,21,55,4,4,24,
%U 0,4,4,31,39,4,4,5,399,4,4,31,5,4,4,0,15,4,4
%N Least m>0 such that n = 5^x-y^2 (mod m) has no solution, or 0 if no such m exists.
%C If such an m>0 exists, this proves that n is not in A051216, i.e., not of the form 5^x-y^2. On the other hand, if there are integers x, y such that n=5^x-y^2, then we know that a(n)=0.
%C a(144) > 20000.
%H M. F. Hasler, <a href="/A200505/b200505.txt">Table of n, a(n) for n = 0..143</a>
%F a(2+4k)=a(3+4k)=4, a(8+20k)=a(13+20k)=5 for all k>=0.
%e See A200507.
%o (PARI) A200505(n,b=5,p=3)={ my( x=0, qr, bx, seen ); for( m=3,9e9, while( x^p < m, issquare(b^x-n) & return(0); x++); qr=vecsort(vector(m,i,i^2+n)%m,,8); seen=0; bx=1; until( bittest(seen+=1<<bx, bx=bx*b%m), for(i=1,#qr, qr[i]<bx & next; qr[i]>bx & break; next(3))); return(m))}
%Y Cf. A051204-A051221, A200505-A200524.
%K nonn
%O 0,3
%A _M. F. Hasler_, Nov 18 2011