Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Apr 16 2023 20:37:00
%S 1,33,1088,35871,1182655,38991744,1285544897,42383989857,
%T 1397386120384,46071357982815,1518957427312511,50079523743330048,
%U 1651105326102579073,54436396237641779361,1794749970516076139840,59172312630792870835359,1950891566845648661427007
%N Expansion of g.f. 1/(1 - 33*x + x^2).
%C A Diophantine property of these numbers: (a(n+1)-a(n-1))^2 - 1085*a(n)^2 = 4.
%C More generally, for t(m)=(m+sqrt(m^2-4))/2 and u(n)=(t(m)^(n+1)-1/t(m)^(n+1))/(t(m)-1/t(m)), we can verify that (u(n+1)-u(n-1))^2-(m^2-4)*u(n)^2=4.
%C a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,32}. - _Milan Janjic_, Jan 26 2015
%H Bruno Berselli, <a href="/A200441/b200441.txt">Table of n, a(n) for n = 0..500</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (33,-1).
%F a(n) = 33*a(n-1)-a(n-2) with a(0)=1, a(1)=33.
%F a(n) = -a(-n-2) = (t^(n+1)-1/t^(n+1))/(t-1/t), where t=(33+sqrt(1085))/2.
%F a(n) = sum((-1)^k*binomial(n-k, k)*33^(n-2k), k=0..floor(n/2)).
%F a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*32^k. - _Philippe Deléham_, Feb 10 2012
%F From _Peter Bala_, Dec 23 2012: (Start)
%F Product {n >= 0} (1 + 1/a(n)) = 1/31*(31 + sqrt(1085)).
%F Product {n >= 1} (1 - 1/a(n)) = 1/66*(31 + sqrt(1085)). (End)
%F E.g.f.: exp(33*x/2)*cosh(sqrt(1085)*x/2) + 33*exp(33*x/2)*sinh(sqrt(1085)*x/2)/sqrt(1085). - _Stefano Spezia_, Apr 16 2023
%t LinearRecurrence[{33, -1}, {1, 33}, 17]
%o (PARI) Vec(1/(1-33*x+x^2)+O(x^17))
%o (Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-1085); S:=[(((33+r)/2)^n-1/((33+r)/2)^n)/r: n in [1..17]]; [Integers()!S[j]: j in [1..#S]];
%o (Maxima) makelist(sum((-1)^k*binomial(n-k,k)*33^(n-2*k),k,0,floor(n/2)),n,0,16);
%Y Cf. A004190, A056594, A077421; A029547, A029548; A200442.
%Y Cf. A101950.
%K nonn,easy
%O 0,2
%A _Bruno Berselli_, Nov 18 2011