login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200273
Number of 0..n arrays x(0..5) of 6 elements with zero 3rd differences.
1
2, 3, 6, 9, 14, 25, 36, 47, 64, 87, 110, 143, 176, 209, 258, 311, 364, 431, 498, 575, 666, 761, 856, 969, 1092, 1219, 1364, 1513, 1662, 1847, 2032, 2221, 2432, 2647, 2876, 3135, 3394, 3657, 3946, 4257, 4568, 4913, 5258, 5607, 6004, 6409, 6814, 7257, 7700, 8169
OFFSET
1,1
COMMENTS
Row 4 of A200272.
LINKS
FORMULA
Empirical: a(n) = a(n-3) +a(n-5) +a(n-6) -a(n-8) -a(n-9) +a(n-10) -a(n-11) -a(n-13) +a(n-14) -a(n-15) -a(n-16) +a(n-18) +a(n-19) +a(n-21) -a(n-24).
Empirical g.f.: x*(2 + 3*x + 6*x^2 + 7*x^3 + 11*x^4 + 17*x^5 + 22*x^6 + 24*x^7 + 26*x^8 + 33*x^9 + 31*x^10 + 32*x^11 + 26*x^12 + 26*x^13 + 21*x^14 + 15*x^15 + 10*x^16 + 8*x^17 + 6*x^18 + 3*x^19 + 3*x^20 + x^21 - x^23) / ((1 - x)^4*(1 + x)^2*(1 - x + x^2)*(1 + x + x^2)^2*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)^2). - Colin Barker, May 20 2018
EXAMPLE
Some solutions for n=6:
..2....3....0....6....3....5....0....4....1....5....0....5....5....3....0....4
..2....5....0....5....1....4....2....4....1....3....3....6....5....3....4....2
..2....6....0....4....0....3....3....4....1....2....5....6....5....3....6....1
..2....6....0....3....0....2....3....4....1....2....6....5....5....3....6....1
..2....5....0....2....1....1....2....4....1....3....6....3....5....3....4....2
..2....3....0....1....3....0....0....4....1....5....5....0....5....3....0....4
CROSSREFS
Cf. A200272.
Sequence in context: A147007 A146937 A032231 * A303664 A190276 A113808
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 15 2011
STATUS
approved