login
A200249
Number of 0..5 arrays x(0..n-1) of n elements with each no smaller than the sum of its previous elements modulo 6.
1
6, 21, 75, 267, 951, 3387, 12063, 42963, 153015, 544971, 1940943, 6912771, 24620199, 87686139, 312298815, 1112268723, 3961403799, 14108748843, 50249054127, 178964660067, 637392088455, 2270105585499, 8085100933407, 28795513971219
OFFSET
1,1
COMMENTS
Column 5 of A200251.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) +2*a(n-2).
Conjectures from Colin Barker, May 20 2018: (Start)
G.f.: 3*x*(2 + x) / (1 - 3*x - 2*x^2).
a(n) = (3*2^(-2-n)*((3-sqrt(17))^n*(-5+sqrt(17)) + (3+sqrt(17))^n*(5+sqrt(17)))) / sqrt(17).
(End)
EXAMPLE
Some solutions for n=6:
..2....2....3....2....0....0....3....3....2....3....3....3....1....0....1....3
..5....4....5....5....1....3....3....4....5....4....4....4....1....0....1....3
..2....3....5....1....5....5....2....5....4....5....2....3....2....5....2....0
..5....3....1....2....2....4....4....5....5....1....5....5....4....5....5....2
..5....2....5....5....3....4....5....5....4....3....5....4....2....5....4....4
..3....4....5....4....5....5....5....5....5....4....2....4....4....3....5....5
CROSSREFS
Cf. A200251.
Sequence in context: A107660 A200665 A200466 * A207097 A027281 A006814
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 15 2011
STATUS
approved