Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #52 Dec 19 2016 05:24:59
%S -297,548147655,-1019827620252441,1897387247823873407415,
%T -3530085179800800999132960777,6567716416847133270037051381858983,
%U -12219223258107727669457593220846745613305,22733840433256343397153666138928891468676446359
%N The differences x^3 - y^2 of Danilov's subsequence of good Hall's examples A078933.
%C For x values see A200216.
%C For y values see A200217.
%C All terms in this sequence are of the form: 3^3 * 11(2^3 * 31 * 61^2 * k + 922807).
%F 3125 * a(n)^2 + 6750 * a(n) + 729 = 2916 * A200216(n).
%F a(n) = (A200216(n))^3 - (A200217(n))^2.
%F Conjecture: a(n) = -1860497 * a(n-1) + 1860497 * a(n-2) + a(n-3) with g.f. 297 * z * (1 + 14882 * z + z^2) / ( (z-1)*(z^2 + 1860498 * z+1) ). - _R. J. Mathar_, Nov 15 2011
%F Hyperelliptic curve (157464*y)^2 = (729 + 594*d + 125*d^2) (-729 + 13500*d + 15625*d^2)^2 is singular (has two cusps) and for this reason Danilov's sequence has infinitely many integer solutions. - _Artur Jasinski_, Nov 16 2011
%F (27/125) * (-5 + (-1)^n * ((-1)^(n+1) * 6 + L[15(2n - 1)]) where L(k) is the k-th Lucas number: A000204(n) or A000032(n+1). - _Artur Jasinski_, Nov 18 2011
%t aa = {}; uu = 682 + 61 * Sqrt[125]; Do[vv = Expand[uu^(2 * n - 1)]; tt = ((-1)^n vv[[1]] + 57)/125; xx = (5^5 * tt^2 - 3000 * tt + 719); yy = Round[N[Sqrt[xx^3], 1000]]; dd = xx^3 - yy^2; AppendTo[aa, dd], {n, 1, 10}]; aa
%t (* Recurrence generator of _R. J. Mathar_ *)
%t dd = {-297, 548147655, -1019827620252441}; a0 = dd[[1]]; a1 = dd[[2]]; a2 = dd[[3]]; Do[a = a0 + 1860497 * a1 - 1860497 * a2; a0 = a1; a1 = a2; a2 = a; AppendTo[aa, a], {n, 1, 10}]; aa
%t (* Third one after Lucas numbers formula *)
%t Table[27/125 (-5 + (-1)^n ((-1)^(n + 1) 6 + LucasL[15 (-1 + 2 n)])), {n, 10}] (* _Artur Jasinski_, Nov 18 2011*)
%Y Cf. A078933, A179107, A179108, A179109, A179387, A179388, A199496.
%K sign
%O 1,1
%A _Artur Jasinski_, Nov 14 2011