login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200171
Triangle, read by rows, such that row n equals the coefficients of x^(n^2+n-1+k) in F(x,n) for k = 1..n, where F(x,n) = (1 + x*F(x,n))*(1 + x^n/F(x,n)), for n>=1.
4
1, 4, 1, -3, 7, 1, 16, -19, 11, 1, -40, 86, -54, 16, 1, 134, -328, 302, -118, 22, 1, -427, 1289, -1483, 827, -223, 29, 1, 1432, -5003, 7009, -5003, 1927, -383, 37, 1, -4860, 19450, -32030, 28030, -14012, 4006, -614, 46, 1, 16798, -75580, 143210, -148510, 91730, -34396, 7646, -934, 56, 1
OFFSET
1,2
COMMENTS
The initial n rows of this triangle are obtained from the initial (n+1)^2 - 1 coefficients of the function F(x,n) = (1 + x*F(x,n))*(1 + x^n/F(x,n)) upon removing the n leading 1's and thereafter removing 2's; see the example section for illustrations of this pattern.
LINKS
FORMULA
T(n,1) = (-1)^n*A000108(n) + 2 = (-1)^n*binomial(2*n,n)/(n+1) + 2, for n>=1.
T(n,2) = (-1)^(n-1)*binomial(2*n-1,n-2) + 2, for n>=2.
EXAMPLE
Triangle begins:
1;
4, 1;
-3, 7, 1;
16, -19, 11, 1;
-40, 86, -54, 16, 1;
134, -328, 302, -118, 22, 1;
-427, 1289, -1483, 827, -223, 29, 1;
1432, -5003, 7009, -5003, 1927, -383, 37, 1;
-4860, 19450, -32030, 28030, -14012, 4006, -614, 46, 1;
16798, -75580, 143210, -148510, 91730, -34396, 7646, -934, 56, 1;
-58784, 293932, -629848, 755822, -556918, 259898, -76438, 13652, -1363, 67, 1;
208014, -1144064, 2735812, -3730648, 3197702, -1790710, 659738, -157078, 23102, -1923, 79, 1; ...
Row sums begin: [1,5,5,9,9,13,13,17,17,21,21,25,25,29,29,...].
ILLUSTRATION OF INITIAL ROWS.
The rows of this triangle can be generated in the following manner.
For row 7, the coefficients in F(x,7) = (1 + x*F(x,7))*(1 + x^7/F(x,7)) begin:
[1,1,1,1,1,1,1, 2,2,2,2,2,2,2, 1, 2,2,2,2,2,2, 4,1, 2,2,2,2,2, -3,7,1, 2,2,2,2, 16,-19,11,1, 2,2,2, -40,86,-54,16,1, 2,2, 134,-328,302,-118,22,1, 2, -427,1289,-1483,827,-223,29,1, ...],
which can be arranged like so:
1,1,1,1,1,1,1,
2,2,2,2,2,2,2,
1,
2,2,2,2,2,2,
4,1,
2,2,2,2,2,
-3,7,1,
2,2,2,2,
16,-19,11,1,
2,2,2,
-40,86,-54,16,1,
2,2,
134,-328,302,-118,22,1,
2,
-427,1289,-1483,827,-223,29,1, ...;
then, if we remove all 2's and the first row of 1's, we obtain the initial 7 rows of this triangle.
This triangle is the limit of the above process.
PROG
(PARI) {T(n, k)=local(A=1+x); for(i=1, n^2+n+k, A=(1+x*A)*(1+x^n/(A+x*O(x^(n^2+k))))); polcoeff(A, n^2+n-1+k)}
{for(n=1, 15, for(k=1, n, print1(T(n, k), ", ")); print(""))}
CROSSREFS
Cf. A200172 (column 3), A200173 (column 4), A200140 (central terms).
Sequence in context: A074813 A151861 A210583 * A109531 A200132 A378799
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Nov 13 2011
STATUS
approved