login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the negated value of the digamma function at 3/4.
8

%I #31 May 13 2024 21:05:47

%S 1,0,8,5,8,6,0,8,7,9,7,8,6,4,7,2,1,6,9,6,2,6,8,8,6,7,6,2,8,1,7,1,8,0,

%T 6,9,3,1,7,0,0,7,5,0,3,9,3,3,3,1,3,6,4,5,0,6,8,0,3,3,4,9,6,7,2,1,1,1,

%U 4,0,3,8,9,5,4,3,6,4,4,3,1,8,4,4,0,5,1,9,6,3,1,6,0,9,9,4,4

%N Decimal expansion of the negated value of the digamma function at 3/4.

%H G. C. Greubel, <a href="/A200134/b200134.txt">Table of n, a(n) for n = 1..10000</a>

%H E. D. Krupnikov, K. S. Kölbig, <a href="https://doi.org/10.1016/S0377-0427(96)00111-2">Some special cases of the generalized hypergeometric function (q+1)Fq</a>, J. Comp. Appl. Math. 78 (1997) 79-95.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Digamma_function">Digamma function</a>

%H <a href="/index/Di#differential_equations">Index entries for sequences related to the digamma function</a>

%F Psi(3/4) = -gamma + Pi/2 - 3*log(2) = A000796 - A020777 = 3.14159... - 4.22745...

%F Pi = gamma(0,1/4) - gamma(0,3/4) = A020777 - A200134, where gamma(n,x) denotes the generalized Stieltjes constants. - _Peter Luschny_, May 16 2018

%e Psi(3/4) = -1.085860879786472169626886762817...

%p evalf(-gamma+Pi/2-3*log(2)) ;

%t RealDigits[ -PolyGamma[3/4], 10, 97] // First (* _Jean-François Alcover_, Feb 20 2013 *)

%t N[StieltjesGamma[0, 3/4], 99] (* _Peter Luschny_, May 16 2018 *)

%o (PARI) -psi(3/4) \\ _Charles R Greathouse IV_, Nov 22 2011

%o (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); -EulerGamma(R) + Pi(R)/2 - 3*Log(2); // _G. C. Greubel_, Aug 29 2018

%Y Cf. A001620, A020759, A020777, A047787, A301816.

%K cons,nonn

%O 1,3

%A _R. J. Mathar_, Nov 13 2011