login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies A(x) = (1 + x*A(x)^2)*(1 + x^2*A(x)^3).
12

%I #27 Jul 18 2023 10:32:50

%S 1,1,3,11,45,198,914,4367,21414,107155,544987,2808978,14640073,

%T 77025373,408544815,2182206259,11727989593,63373962690,344109933186,

%U 1876562458845,10273572074493,56443282489240,311097732946200,1719707775782826,9531914043637385,52963938340248863,294966593345731623

%N G.f. satisfies A(x) = (1 + x*A(x)^2)*(1 + x^2*A(x)^3).

%C More generally, for fixed parameters p, q, r, and s, if F(x) satisfies:

%C F(x) = exp( Sum_{n>=1} x^(n*r)*F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^(k*s)*F(x)^(k*q)] ),

%C then F(x) = (1 + x^r*F(x)^(p+1))*(1 + x^(r+s)*F(x)^(p+q+1)).

%H G. C. Greubel, <a href="/A200075/b200075.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: (1/x)*Series_Reversion( x*(1-x-x^2 + sqrt((1+x+x^2)*(1-3*x+x^2)))/2 ).

%F a(n) = [x^n] G(x)^(n+1)/(n+1), where 1+x*G(x) is the g.f. of A004148.

%F G.f. A(x) satisfies:

%F (1) A(x) = (1/x)*Series_Reversion( x/G(x) ) where 1+x*G(x) is the g.f. of A004148.

%F (2) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) and 1+x*G(x) is the g.f. of A004148.

%F (3) A(x) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2 * x^k*A(x)^k] * x^n*A(x)^n/n ).

%F (4) A(x) = exp( Sum_{n>=1} [(1-x*A(x))^(2*n+1)*Sum_{k>=0} C(n+k,k)^2*x^k*A(x)^k )] * x^n*A(x)^n/n.

%F Recurrence: 8*n*(2*n+1)*(4*n+1)*(4*n+3)*(1557671*n^7 - 18939961*n^6 + 94817789*n^5 - 252067387*n^4 + 381880748*n^3 - 327052012*n^2 + 145198992*n - 25583040)*a(n) = (2026529971*n^11 - 24640889261*n^10 + 122927623620*n^9 - 322351865586*n^8 + 467303512311*n^7 - 343677276405*n^6 + 61590777290*n^5 + 76066203476*n^4 - 45605627832*n^3 + 4625651136*n^2 + 1916801280*n - 338688000)*a(n-1) + 2*(800642894*n^11 - 10936104295*n^10 + 62803409541*n^9 - 196202081616*n^8 + 357730085364*n^7 - 370711524567*n^6 + 174415015309*n^5 + 25877389846*n^4 - 63266190708*n^3 + 19055552472*n^2 + 1313789760*n - 861840000)*a(n-2) + 6*(308418858*n^11 - 4675368852*n^10 + 30103912361*n^9 - 106665982366*n^8 + 223860428776*n^7 - 274000455628*n^6 + 166116940489*n^5 - 2432493994*n^4 - 54297743044*n^3 + 22033617000*n^2 + 936446400*n - 1315440000)*a(n-3) + 6*(n-2)*(2*n-7)*(3*n-10)*(3*n-8)*(1557671*n^7 - 8036264*n^6 + 13889114*n^5 - 7559372*n^4 - 2491645*n^3 + 2975476*n^2 - 179460*n - 187200)*a(n-4). - _Vaclav Kotesovec_, Sep 19 2013

%F a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 1301/1024 + 1/(1024*sqrt(3/(7183147 - (2002819072*2^(2/3))/(3725055779 + 42057117*sqrt(16305))^(1/3) + 1024*(7450111558 + 84114234*sqrt(16305))^(1/3)))) + (1/2)*sqrt(7183147/393216 - (3725055779 + 42057117*sqrt(16305))^(1/3)/(384*2^(2/3)) + 977939/(192*(7450111558 + 84114234*sqrt(16305))^(1/3)) + (1/131072)*(4194454317*sqrt(3/(7183147 - (2002819072*2^(2/3))/(3725055779 + 42057117*sqrt(16305))^(1/3) + 1024*(7450111558 + 84114234*sqrt(16305))^(1/3))))) = 5.89828930084513611... is the root of the equation -108 - 1188*d - 1028*d^2 - 1301*d^3 + 256*d^4 = 0 and c = 0.656947859044624009263362998790812821830934... - _Vaclav Kotesovec_, Sep 19 2013

%F a(n) = Sum_{k=0..floor(n/2)} binomial(2*n-k+1,k) * binomial(2*n-k+1,n-2*k) / (2*n-k+1). - _Seiichi Manyama_, Jul 18 2023

%e G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 45*x^4 + 198*x^5 + 914*x^6 +...

%e Related expansions:

%e A(x)^2 = 1 + 2*x + 7*x^2 + 28*x^3 + 121*x^4 + 552*x^5 + 2615*x^6 +...

%e A(x)^3 = 1 + 3*x + 12*x^2 + 52*x^3 + 237*x^4 + 1122*x^5 + 5463*x^6 +...

%e A(x)^5 = 1 + 5*x + 25*x^2 + 125*x^3 + 630*x^4 + 3211*x^5 + 16545*x^6 +...

%e where A(x) = 1 + x*A(x)^2 + x^2*A(x)^3 + x^3*A(x)^5.

%e The logarithm of the g.f. A = A(x) equals the series:

%e log(A(x)) = (1 + x*A)*x*A + (1 + 2^2*x*A + x^2*A^2)*x^2*A^2/2 +

%e (1 + 3^2*x*A + 3^2*x^2*A^2 + x^3*A^3)*x^3*A^3/3 +

%e (1 + 4^2*x*A + 6^2*x^2*A^2 + 4^2*x^3*A^3 + x^4*A^4)*x^4*A^4/4 +

%e (1 + 5^2*x*A + 10^2*x^2*A^2 + 10^2*x^3*A^3 + 5^2*x^4*A^4 + x^5*A^5)*x^5*A^5/5 +

%e (1 + 6^2*x*A + 15^2*x^2*A^2 + 20^2*x^3*A^3 + 15^2*x^4*A^4 + 6^2*x^5*A^5 + x^6*A^6)*x^6*A^6/6 +...

%e more explicitly,

%e log(A(x)) = x + 5*x^2/2 + 25*x^3/3 + 129*x^4/4 + 686*x^5/5 + 3713*x^6/6 + 20350*x^7/7 +...

%e Given G(x) where 1+x*G(x) is the g.f. of A004148, then the coefficients in the powers of G(x) begin:

%e 1: [(1), 1, 2, 4, 8, 17, 37, 82, 185, 423, 978, ...];

%e 2: [1,(2), 5, 12, 28, 66, 156, 370, 882, 2112, ...];

%e 3: [1, 3,(9), 25, 66, 171, 437, 1107, 2790, 7009, ...];

%e 4: [1, 4, 14,(44), 129, 364, 1000, 2696, 7172, 18892, ...];

%e 5: [1, 5, 20, 70,(225), 686, 2015, 5760, 16135, 44500, ...];

%e 6: [1, 6, 27, 104, 363,(1188), 3713, 11214, 32994, 95106, ...];

%e 7: [1, 7, 35, 147, 553, 1932,(6398), 20350, 62734, 188650, ...];

%e 8: [1, 8, 44, 200, 806, 2992, 10460,(34936), 112585, 352560, ...];

%e 9: [1, 9, 54, 264, 1134, 4455, 16389, 57330,(192726), 627406, ...]; ...;

%e the coefficients in parenthesis form the initial terms of this sequence:

%e [1/1, 2/2, 9/3, 44/4, 225/5, 1188/6, 6398/7, 34936/8, 192726/9, ...].

%e The coefficients in the logarithm of the g.f. is also a diagonal in the above table.

%t CoefficientList[1/x*InverseSeries[Series[x*(1-x-x^2 + Sqrt[(1+x+x^2)*(1-3*x+x^2)])/2,{x,0,20}],x],x] (* _Vaclav Kotesovec_, Sep 19 2013 *)

%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=(1+x*A^2)*(1+x^2*A^3)+x*O(x^n));polcoeff(A,n)}

%o (PARI) {a(n)=polcoeff(1/x*serreverse(x*(1-x-x^2 + sqrt((1+x+x^2)*(1-3*x+x^2)+x*O(x^n)))/2),n)}

%o (PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^j*A^j)*(x*A+x*O(x^n))^m/m))); polcoeff(A, n, x)}

%o (PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x*A)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*A^j)*x^m*A^m/m))); polcoeff(A, n, x)}

%Y Cf. A004148, A199876, A199877, A198951, A198953, A198957, A192415, A198888, A036765.

%Y Cf. A186241, A199874, A200074, A200718, A200719, A215576.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Nov 13 2011