Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Jul 06 2018 17:10:04
%S 6,5,9,2,6,6,0,4,5,7,6,6,9,4,6,0,7,4,5,3,7,3,4,8,5,7,9,5,6,3,0,6,7,6,
%T 1,1,6,1,5,3,2,8,0,2,1,6,4,4,5,1,6,7,9,7,3,6,0,9,4,5,1,3,0,3,1,4,1,0,
%U 7,3,6,4,4,5,5,8,7,4,2,6,6,2,4,4,0,7,1,9,5,1,9,3,1,6,4,1,4,4,7
%N Decimal expansion of least x satisfying x^2 + cos(x) = 2*sin(x).
%C For many choices of a,b,c, there are exactly two numbers x>0 satisfying a*x^2+b*cos(x)=c*sin(x).
%C Guide to related sequences, with graphs included in Mathematica programs:
%C a.... b.... c.... least x, greatest x
%C 1.... 1.... 2.... A199949, A199950
%C 1.... 1.... 3.... A199951, A199952
%C 1.... 1.... 4.... A199953, A199954
%C 1.... 2.... 3.... A199955, A199956
%C 1.... 2.... 4.... A199957, A199958
%C 1.... 3.... 3.... A199959, A199960
%C 1.... 3.... 4.... A199961, A199962
%C 1.... 4.... 3.... A199963, A199964
%C 1.... 4.... 4.... A199965, A199966
%C 2.... 1.... 3.... A199967, A200003
%C 2.... 1.... 4.... A200004, A200005
%C 3.... 1.... 4.... A200006, A200007
%C 4.... 1.... 4.... A200008, A200009
%C 1... -1.... 1.... A200010, A200011
%C 1... -1.... 2.... A200012, A200013
%C 1... -1.... 3.... A200014, A200015
%C 1... -1.... 4.... A200016, A200017
%C 1... -2.... 1.... A200018, A200019
%C 1... -2.... 2.... A200020, A200021
%C 1... -2.... 3.... A200022, A200023
%C 1... -2.... 4.... A200024, A200025
%C 1... -3.... 1.... A200026, A200027
%C 1... -3.... 2.... A200093, A200094
%C 1... -3.... 3.... A200095, A200096
%C 1... -3.... 4.... A200097, A200098
%C 1... -4.... 1.... A200099, A200100
%C 1... -4.... 2.... A200101, A200102
%C 1... -4.... 3.... A200103, A200104
%C 1... -4.... 4.... A200105, A200106
%C 2... -1.... 1.... A200107, A200108
%C 2... -1.... 2.... A200109, A200110
%C 2... -1.... 3.... A200111, A200112
%C 2... -1.... 4.... A200114, A200115
%C 2... -2.... 1.... A200116, A200117
%C 2... -2.... 3.... A200118, A200119
%C 2... -3.... 1.... A200120, A200121
%C 2... -3.... 2.... A200122, A200123
%C 2... -3.... 3.... A200124, A200125
%C 2... -3.... 4.... A200126, A200127
%C 2... -4.... 1.... A200128, A200129
%C 2... -4.... 3.... A200130, A200131
%C 3... -1.... 1.... A200132, A200133
%C 3... -1.... 2.... A200223, A200224
%C 3... -1.... 3.... A200225, A200226
%C 3... -1.... 4.... A200227, A200228
%C 3... -2.... 1.... A200229, A200230
%C 3... -2.... 2.... A200231, A200232
%C 3... -2.... 3.... A200233, A200234
%C 3... -2.... 4.... A200235, A200236
%C 3... -3.... 1.... A200237, A200238
%C 3... -3.... 2.... A200239, A200240
%C 3... -3.... 4.... A200241, A200242
%C 3... -4.... 1.... A200277, A200278
%C 3... -4.... 2.... A200279, A200280
%C 3... -4.... 3.... A200281, A200282
%C 3... -4.... 4.... A200283, A200284
%C 4... -1.... 1.... A200285, A200286
%C 4... -1.... 2.... A200287, A200288
%C 4... -1.... 3.... A200289, A200290
%C 4... -1.... 4.... A200291, A200292
%C 4... -2.... 1.... A200293, A200294
%C 4... -2.... 3.... A200295, A200296
%C 4... -3.... 1.... A200299, A200300
%C 4... -3.... 2.... A200297, A200298
%C 4... -3.... 3.... A200301, A200302
%C 4... -3.... 4.... A200303, A200304
%C 4... -4.... 1.... A200305, A200306
%C 4... -4.... 3.... A200307, A200308
%C Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
%C For an example related to A199949, take f(x,u,v)=x^2+u*cos(x)-v*sin(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.
%H G. C. Greubel, <a href="/A199949/b199949.txt">Table of n, a(n) for n = 0..10000</a>
%e least x: 0.659266045766946074537348579563067611...
%e greatest x: 1.2710268008159460640047188480978502...
%t (* Program 1: A199949 *)
%t a = 1; b = 1; c = 2;
%t f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
%t Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
%t r = x /. FindRoot[f[x] == g[x], {x, .65, .66}, WorkingPrecision -> 110]
%t RealDigits[r] (* A199949 *)
%t r = x /. FindRoot[f[x] == g[x], {x, 1.27, 1.28}, WorkingPrecision -> 110]
%t RealDigits[r] (* A199950 *)
%t (* Program 2: implicit surface of x^2+u*cos(x)=v*sin(x) *)
%t f[{x_, u_, v_}] := x^2 + u*Cos[x] - v*Sin[x];
%t t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, -5, 0}, {v, 0, 1}];
%t ListPlot3D[Flatten[t, 1]] (* for A199949 *)
%o (PARI) a=1; b=1; c=2; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jul 05 2018
%Y Cf. A199950.
%K nonn,cons
%O 0,1
%A _Clark Kimberling_, Nov 12 2011
%E A-number corrected by _Jaroslav Krizek_, Nov 27 2011