Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #25 Jan 05 2025 19:51:39
%S 2,-1,-8,15,22,-104,17,510,-721,-1708,5806,1503,-31520,31519,121778,
%T -312396,-233455,1885694,-1152593,-8196936,16079050,21867343,
%U -109306936,24246207,528076766,-780482080,-1726348607,6132589566,1190594623,-32799408980,34705374038,124349675919,-331866549712
%N Trisection 1 of A199802.
%C Also trisection 2 of A199803.
%H Colin Barker, <a href="/A199928/b199928.txt">Table of n, a(n) for n = 0..1000</a>
%H Hirschhorn, Michael D., <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/43-4.html">Non-trivial intertwined second-order recurrence relations</a>, Fibonacci Quart. 43 (2005), no. 4, 316-325. See p. 324.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-5,1,-1).
%F G.f.: ( 2+x+x^2 ) / ( 1+x+5*x^2-x^3+x^4 ). - _R. J. Mathar_, Jun 18 2014
%F a(n) = -a(n-1) - 5*a(n-2) + a(n-3) - a(n-4) for n>3. - _Colin Barker_, Dec 27 2017
%t LinearRecurrence[{-1,-5,1,-1},{2,-1,-8,15},40] (* _Harvey P. Dale_, Aug 01 2021 *)
%o (PARI) Vec((2 + x + x^2) / (1 + x + 5*x^2 - x^3 + x^4) + O(x^40)) \\ _Colin Barker_, Dec 27 2017
%K sign,easy
%O 0,1
%A _N. J. A. Sloane_, Nov 12 2011