login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of A(x) where A(x) satisfies A(A(x)) = (2-2*cos(x))/x.
0

%I #12 Feb 11 2013 02:11:21

%S 0,1,0,-1,0,-7,0,-23,0,-5947,0,-140759,0,-8265391,0,133286519,0,

%T 1088222737541,0,4970981405216383,0,7294918534710727,0,

%U -32299178524632916333,0,-944164720798082858723567,0,2252653730296347607326319,0,1968938229271096381309083587

%N Numerators of A(x) where A(x) satisfies A(A(x)) = (2-2*cos(x))/x.

%H Dmitry Kruchinin, Vladimir Kruchinin, <a href="http://arxiv.org/abs/1302.1986">Method for solving an iterative functional equation $A^{2^n}(x)=F(x)$</a>, arXiv:1302.1986

%F a(n) = numerator(T(n,1)); T(n,m) = if n=m then 1 else 1/2*(((-1)^m*2^m*((-1)^(n+m)+1)*sum(j=1..m, ((sum(i=0..(j-1)/2,(j-2*i)^(n+m) *C(j,i))) *C(m,j) *(-1)^((n+m)/2+m-j))/2^j))/(n+m)! -sum(i=m+1..n-1, T(n,i) *T(i,m))).

%e x - 1/24*x^3 - 7/5760*x^5 - 23/193536*x^7 - 5947/464486400*x^9 + ...

%K sign

%O 0,6

%A _Vladimir Kruchinin_, Nov 12 2011