login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of -n..n arrays x(0..5) of 6 elements with zero sum, and adjacent elements not both strictly positive and not both strictly negative.
1

%I #9 May 16 2018 16:29:06

%S 75,533,2035,5725,13363,27457,51395,89577,147547,232125,351539,515557,

%T 735619,1024969,1398787,1874321,2471019,3210661,4117491,5218349,

%U 6542803,8123281,9995203,12197113,14770811,17761485,21217843,25192245,29740835

%N Number of -n..n arrays x(0..5) of 6 elements with zero sum, and adjacent elements not both strictly positive and not both strictly negative.

%C Row 6 of A199898.

%H R. H. Hardin, <a href="/A199901/b199901.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n) = (11/10)*n^5 + (55/6)*n^4 + (55/2)*n^3 + (173/6)*n^2 + (37/5)*n + 1.

%F Conjectures from _Colin Barker_, May 16 2018: (Start)

%F G.f.: x*(75 + 83*x - 38*x^2 + 10*x^3 + 3*x^4 - x^5) / (1 - x)^6.

%F a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.

%F (End)

%e Some solutions for n=6:

%e .-3...-6....0....4....4....2...-5....5....0...-4....0....5...-1....5....2....2

%e ..2....0....1...-6....0....0....0...-4...-2....1....3...-5....3...-5....0...-1

%e ..0....6...-5....0....0...-5....0....4....4...-3...-4....0...-2....0....0....4

%e ..3...-4....4....0...-3....3....3...-5....0....5....0....2....1....2....1...-2

%e .-6....4...-3....0....1...-1...-3....6....3....0....1....0....0...-2....0....2

%e ..4....0....3....2...-2....1....5...-6...-5....1....0...-2...-1....0...-3...-5

%Y Cf. A199898.

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 11 2011