Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Mar 09 2017 10:11:29
%S 1,2,6,8,14,32,56,100,204,388,722,1416,2750,5256,10222,19944,38650,
%T 75272,147142,287120,561018,1098752,2152092,4217620,8276376,16250292,
%U 31921374,62754072,123440514,242921784,478310952,942260548,1856994908,3661288036
%N Number of -1..1 arrays x(0..n-1) of n elements with zero sum and no two neighbors equal.
%C Column 1 of A199704
%H R. H. Hardin, <a href="/A199697/b199697.txt">Table of n, a(n) for n = 1..200</a>
%F G.f.: ((x+1)^2*sqrt((1-x)/(1-x-4*x^3))-2*x-1)/x. - _Stefan Hollos_, Mar 08 2017
%e All solutions for n=5
%e ..0...-1....1...-1....1...-1...-1....0....1...-1....0....1....1....0
%e .-1....1...-1....1....0....1....0...-1...-1....1....1...-1...-1....1
%e ..1....0....0...-1...-1...-1....1....0....1....0....0....1....0...-1
%e .-1...-1....1....1....1....0...-1....1....0....1...-1...-1...-1....1
%e ..1....1...-1....0...-1....1....1....0...-1...-1....0....0....1...-1
%t Rest@ CoefficientList[Series[((x + 1)^2*Sqrt[(1 - x)/(1 - x - 4*x^3)] - 2 x - 1)/x, {x, 0, 34}], x] (* _Michael De Vlieger_, Mar 08 2017 *)
%K nonn
%O 1,2
%A _R. H. Hardin_, Nov 09 2011