Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Oct 03 2022 04:19:32
%S 12,122,14642,214358882,45949729863572162,
%T 2111377674535255285545615254209922,
%U 4457915684525902395869512133369841539490161434991526715513934826242
%N Generalized Fermat numbers: 11^(2^n) + 1, n >= 0.
%H Arkadiusz Wesolowski, <a href="/A199592/b199592.txt">Table of n, a(n) for n = 0..11</a>
%H Anders Björn and Hans Riesel, <a href="http://www.jstor.org/stable/2584996">Factors of Generalized Fermat Numbers</a>, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GeneralizedFermatNumber.html">Generalized Fermat Number</a>.
%H OEIS Wiki, <a href="/wiki/Generalized_Fermat_numbers">Generalized Fermat numbers</a>.
%F a(0) = 12; a(n) = (a(n-1)-1)^2 + 1, n >= 1.
%F a(0) = 12, a(1) = 122; a(n) = a(n-1) + 10*11^(2^(n-1))*Product_{i=0..n-2} a(i), n >= 2.
%F a(0) = 12, a(1) = 122; a(n) = a(n-1)^2 - 2*(a(n-2)-1)^2, n >= 2.
%F a(0) = 12; a(n) = 10*(Product_{i=0..n-1} a(i)) + 2, n >= 1.
%F a(n) = A152583(n) - 1.
%F Sum_{n>=0} 2^n/a(n) = 1/10. - _Amiram Eldar_, Oct 03 2022
%e a(0) = 11^(2^0) + 1 = 11^1 + 1 = 12 = 10*(2^0) + 2;
%e a(1) = 11^(2^1) + 1 = 11^2 + 1 = 122 = 10*(2^1*6) + 2;
%e a(2) = 11^(2^2) + 1 = 11^4 + 1 = 14642 = 10*(2^2*6*61) + 2;
%e a(3) = 11^(2^3) + 1 = 11^8 + 1 = 214358882 = 10*(2^3*6*61*7321) + 2;
%e a(4) = 11^(2^4) + 1 = 11^16 + 1 = 45949729863572162 = 10*(2^4*6*61*7321*107179441) + 2;
%e a(5) = 11^(2^5) + 1 = 11^32 + 1 = 2111377674535255285545615254209922 = 10*(2^5*6*61*7321*107179441*22974864931786081) + 2;
%t Table[11^2^n + 1, {n, 0, 6}]
%o (Magma) [11^2^n+1 : n in [0..6]]
%o (PARI) for(n=0, 6, print1(11^2^n+1, ", "))
%Y Cf. A059919, A199591, A078303, A078304, A152581, A080176, A152585.
%K easy,nonn
%O 0,1
%A _Arkadiusz Wesolowski_, Nov 08 2011