OFFSET
0,1
COMMENTS
An Engel expansion of 3 to the base 9 as defined in A181565, with the associated series expansion 3 = 9/4 + 9^2/(4*28) + 9^3/(4*28*244) + 9^4/(4*28*244*2188) + .... Cf. A087289 and A207262. - Peter Bala, Oct 29 2013
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (10,-9).
FORMULA
a(n) = 4*A066443(n).
a(n) = 9*a(n-1) - 8.
a(n) = 10*a(n-1) - 9*a(n-2).
G.f.: 4*(1-3*x)/((1-x)*(1-9*x)).
From Elmo R. Oliveira, Sep 13 2024: (Start)
E.g.f.: exp(x)*(3*exp(8*x) + 1).
a(n) = 2*A199560(n). (End)
MATHEMATICA
3*9^Range[0, 20]+1 (* or *) LinearRecurrence[{10, -9}, {4, 28}, 20] (* Harvey P. Dale, Jul 30 2019 *)
PROG
(Magma) [3*9^n+1: n in [0..30]];
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Nov 08 2011
STATUS
approved