login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199561
a(n) = 3*9^n + 1.
5
4, 28, 244, 2188, 19684, 177148, 1594324, 14348908, 129140164, 1162261468, 10460353204, 94143178828, 847288609444, 7625597484988, 68630377364884, 617673396283948, 5559060566555524, 50031545098999708, 450283905890997364, 4052555153018976268, 36472996377170786404
OFFSET
0,1
COMMENTS
An Engel expansion of 3 to the base 9 as defined in A181565, with the associated series expansion 3 = 9/4 + 9^2/(4*28) + 9^3/(4*28*244) + 9^4/(4*28*244*2188) + .... Cf. A087289 and A207262. - Peter Bala, Oct 29 2013
FORMULA
a(n) = 4*A066443(n).
a(n) = 9*a(n-1) - 8.
a(n) = 10*a(n-1) - 9*a(n-2).
G.f.: 4*(1-3*x)/((1-x)*(1-9*x)).
From Elmo R. Oliveira, Sep 13 2024: (Start)
E.g.f.: exp(x)*(3*exp(8*x) + 1).
a(n) = 2*A199560(n). (End)
MATHEMATICA
3*9^Range[0, 20]+1 (* or *) LinearRecurrence[{10, -9}, {4, 28}, 20] (* Harvey P. Dale, Jul 30 2019 *)
PROG
(Magma) [3*9^n+1: n in [0..30]];
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Nov 08 2011
STATUS
approved