login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Clark Kimberling's even first column Stolarsky array read by antidiagonals.
2

%I #28 Jan 05 2025 19:51:39

%S 1,2,4,3,7,6,5,11,9,10,8,18,15,17,12,13,29,24,27,19,14,21,47,39,44,31,

%T 23,16,34,76,63,71,50,37,25,20,55,123,102,115,81,60,41,33,22,89,199,

%U 165,186,131,97,66,53,35,26,144,322,267,301,212,157,107,86,57,43,28

%N Clark Kimberling's even first column Stolarsky array read by antidiagonals.

%C The rows of the array can be seen to have the form A(n, k) = p(n)*Fibonacci(k) + q(n)*Fibonacci(k+1) where p(n) is the sequence {0, 1, 3, 3, 3, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15, 17, ...}_{n >= 1} and q(n) is the sequence {1, 3, 3, 7, 2, 9, 9, 13, 13, 17, 17, 19, 19, 23, 23, 25, ...}_{n >= 1}. - _G. C. Greubel_, Jun 23 2022

%H Clark Kimberling, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/32-4/kimberling.pdf">The first column of an interspersion</a>, Fibonacci Quarterly 32 (1994), pp. 301-314.

%F From _G. C. Greubel_, Jun 23 2022: (Start)

%F T(n, 1) = A000045(n+1).

%F T(n, 2) = A000032(n+1), n >= 2.

%F T(n, 3) = A022086(n) = A097135(n), n >= 3.

%F T(n, 4) = A022120(n-2), n >= 4.

%F T(n, 5) = A013655(n-1), n >= 5.

%F T(n, 6) = A000285(n-2), n >= 6.

%F T(n, 7) = A022113(n-4), n >= 7.

%F T(n, 8) = A022096(n-4), n >= 8.

%F T(n, 9) = A022130(n-6), n >= 9.

%F T(n, 10) = A022098(n-5), n >= 10.

%F T(n, 11) = A022095(n-7), n >= 11.

%F T(n, 12) = A022121(n-8), n >= 12.

%F T(n, 13) = A022388(n-10), n >= 13.

%F T(n, 14) = A022122(n-10), n >= 14.

%F T(n, 15) = A022097(n-10), n >= 15.

%F T(n, 16) = A022088(n-10), n >= 16.

%F T(n, 17) = A022390(n-14), n >= 17.

%F T(n, n) = A199536(n).

%F T(n, n-1) = A199537(n-1), n >= 2. (End)

%e The even first column stolarsky array (EFC array), northwest corner:

%e 1......2.....3.....5.....8....13....21....34....55....89...144 ... A000045;

%e 4......7....11....18....29....47....76...123...199...322...521 ... A000032;

%e 6......9....15....24....39....63...102...165...267...432...699 ... A022086;

%e 10....17....27....44....71...115...186...301...487...788..1275 ... A022120;

%e 12....19....31....50....81...131...212...343...555...898..1453 ... A013655;

%e 14....23....37....60....97...157...254...411...665..1076..1741 ... A000285;

%e 16....25....41....66...107...173...280...453...733..1186..1919 ... A022113;

%e 20....33....53....86...139...225...364...589...953..1542..2495 ... A022096;

%e 22....35....57....92...149...241...390...631..1021..1652..2673 ... A022130;

%e Antidiagonal rows (T(n, k)):

%e 1;

%e 2, 4;

%e 3, 7, 6;

%e 5, 11, 9, 10;

%e 8, 18, 15, 17, 12;

%e 13, 29, 24, 27, 19, 14;

%e 21, 47, 39, 44, 31, 23, 16;

%e 34, 76, 63, 71, 50, 37, 25, 20;

%e 55, 123, 102, 115, 81, 60, 41, 33, 22;

%Y Cf. A000032, A000045, A000285, A013655, A022086, A022088, A022095.

%Y Cf. A022096, A022097, A022113, A022120, A022121, A022122, A022130.

%Y Cf. A022388, A022390, A035506, A035513, A097135, A199536, A199537.

%K nonn,tabl,changed

%O 1,2

%A _Casey Mongoven_, Nov 07 2011

%E More terms added by _G. C. Greubel_, Jun 23 2022