Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 May 15 2018 20:43:48
%S 80,1414,8342,30484,84852,197962,407946,766664,1341816,2219054,
%T 3504094,5324828,7833436,11208498,15657106,21416976,28758560,37987158,
%U 49445030,63513508,80615108,101215642,125826330,155005912,189362760,229556990
%N Number of -n..n arrays x(0..5) of 6 elements with zero sum and no two consecutive zero elements.
%C Row 6 of A199530.
%H R. H. Hardin, <a href="/A199533/b199533.txt">Table of n, a(n) for n = 1..200</a>
%F Empirical: a(n) = (88/5)*n^5 + 44*n^4 + (58/3)*n^3 - 3*n^2 + (31/15)*n.
%F Conjectures from _Colin Barker_, May 15 2018: (Start)
%F G.f.: 2*x*(40 + 467*x + 529*x^2 + 21*x^3 - x^4) / (1 - x)^6.
%F a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
%F (End)
%e Some solutions for n=5:
%e ..1....5...-4....0....5...-3...-1...-3....5....5...-5....0...-3....3....3....4
%e ..3....1....2....5....5...-1....2...-4....4...-3...-2...-3....4....3....1...-1
%e ..3...-5...-3...-3....1...-1....5....1...-5....3....3....4...-3...-1....3....1
%e .-1....0....4...-2...-3...-4...-3...-2....0....0....5....0...-1...-5....0....0
%e .-2...-3....4...-4...-3....4...-2....3...-5...-5....2...-3...-1....2...-2...-2
%e .-4....2...-3....4...-5....5...-1....5....1....0...-3....2....4...-2...-5...-2
%Y Cf. A199530.
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 07 2011