login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199317
a(n) = 2*6^n + 1.
1
3, 13, 73, 433, 2593, 15553, 93313, 559873, 3359233, 20155393, 120932353, 725594113, 4353564673, 26121388033, 156728328193, 940369969153, 5642219814913, 33853318889473, 203119913336833, 1218719480020993, 7312316880125953, 43873901280755713
OFFSET
0,1
FORMULA
a(n) = 6*a(n-1)-5.
a(n) = 7*a(n-1)-6*a(n-2).
G.f.: (3-8*x)/((1-x)*(1-6*x)).
a(n) = 1 + A167747(n+1) = 1 + 2*A000400(n) = A000400(n) + A062394(n). - Alois P. Heinz, Jul 02 2023
MATHEMATICA
2 6^Range[0, 30]+1 (* or *) LinearRecurrence[{7, -6}, {3, 13}, 30] (* Harvey P. Dale, Jul 02 2023 *)
PROG
(Magma) [2*6^n+1: n in [0..30]];
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Nov 05 2011
STATUS
approved