login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Decimal expansion of x<0 satisfying 3*x^2+2*sin(x)=1.
3

%I #7 Jan 30 2025 12:12:43

%S 9,3,1,9,4,4,5,3,9,1,9,6,5,7,4,8,0,8,7,5,7,9,9,4,8,2,2,2,1,9,0,3,5,7,

%T 7,7,4,3,2,4,1,6,3,2,3,9,2,4,2,2,3,1,3,6,1,2,1,0,2,9,6,0,5,1,6,3,7,4,

%U 3,3,6,3,4,4,7,8,0,9,1,8,6,6,5,1,4,5,5,7,1,6,5,7,7,3,9,3,4,5,5

%N Decimal expansion of x<0 satisfying 3*x^2+2*sin(x)=1.

%C See A198866 for a guide to related sequences. The Mathematica program includes a graph.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.

%e negative: -0.93194453919657480875799482221903577743...

%e positive: 0.33648270192335281577039493761106778144...

%t a = 3; b = 2; c = 1;

%t f[x_] := a*x^2 + b*Sin[x]; g[x_] := c

%t Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, -.94, -.93}, WorkingPrecision -> 110]

%t RealDigits[r] (* A199152 *)

%t r = x /. FindRoot[f[x] == g[x], {x, .33, .34}, WorkingPrecision -> 110]

%t RealDigits[r] (* A199153 *)

%Y Cf. A198866.

%K nonn,cons,changed

%O 0,1

%A _Clark Kimberling_, Nov 03 2011