login
Decimal expansion of x>0 satisfying 3*x^2+sin(x)=3.
3

%I #8 Feb 07 2025 16:44:05

%S 8,6,4,0,1,1,2,7,2,4,2,7,9,0,3,4,5,7,3,2,9,5,5,0,3,1,5,0,3,5,9,0,0,2,

%T 9,4,7,0,4,8,8,0,1,7,2,7,8,9,4,2,0,3,8,5,2,7,5,0,0,7,7,8,3,4,3,8,2,4,

%U 2,2,0,4,0,1,2,5,9,8,3,2,0,0,5,6,4,3,1,1,8,0,0,8,8,7,4,2,1,7,8

%N Decimal expansion of x>0 satisfying 3*x^2+sin(x)=3.

%C See A198866 for a guide to related sequences. The Mathematica program includes a graph.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.

%e negative: -1.1415298646423925627075066056294867784...

%e positive: 0.86401127242790345732955031503590029470...

%t a = 3; b = 1; c = 3;

%t f[x_] := a*x^2 + b*Sin[x]; g[x_] := c

%t Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110]

%t RealDigits[r] (* A199150 *)

%t r = x /. FindRoot[f[x] == g[x], {x, .86, .87}, WorkingPrecision -> 110]

%t RealDigits[r] (* A199151 *)

%Y Cf. A198866.

%K nonn,cons,changed

%O 0,1

%A _Clark Kimberling_, Nov 03 2011