%I #8 Feb 07 2025 16:44:05
%S 8,6,4,0,1,1,2,7,2,4,2,7,9,0,3,4,5,7,3,2,9,5,5,0,3,1,5,0,3,5,9,0,0,2,
%T 9,4,7,0,4,8,8,0,1,7,2,7,8,9,4,2,0,3,8,5,2,7,5,0,0,7,7,8,3,4,3,8,2,4,
%U 2,2,0,4,0,1,2,5,9,8,3,2,0,0,5,6,4,3,1,1,8,0,0,8,8,7,4,2,1,7,8
%N Decimal expansion of x>0 satisfying 3*x^2+sin(x)=3.
%C See A198866 for a guide to related sequences. The Mathematica program includes a graph.
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e negative: -1.1415298646423925627075066056294867784...
%e positive: 0.86401127242790345732955031503590029470...
%t a = 3; b = 1; c = 3;
%t f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
%t Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
%t r = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110]
%t RealDigits[r] (* A199150 *)
%t r = x /. FindRoot[f[x] == g[x], {x, .86, .87}, WorkingPrecision -> 110]
%t RealDigits[r] (* A199151 *)
%Y Cf. A198866.
%K nonn,cons,changed
%O 0,1
%A _Clark Kimberling_, Nov 03 2011