login
Decimal expansion of x<0 satisfying 2*x^2+sin(x)=1.
3

%I #8 Feb 07 2025 16:44:05

%S 9,5,2,6,0,9,7,8,3,7,1,1,3,0,6,7,1,3,7,4,7,3,4,8,0,7,3,7,9,2,3,6,0,7,

%T 0,5,8,6,4,4,5,2,8,6,2,8,1,4,1,4,5,1,1,1,7,3,6,0,8,6,8,2,8,4,8,5,0,5,

%U 0,2,3,7,8,5,1,3,9,0,0,6,4,0,3,1,9,7,1,4,1,4,7,4,1,2,1,7,9,7,1

%N Decimal expansion of x<0 satisfying 2*x^2+sin(x)=1.

%C See A198866 for a guide to related sequences. The Mathematica program includes a graph.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.

%e negative: -0.95260978371130671374734807379236070...

%e positive: 0.50711892841537397536307518244985199...

%t a = 2; b = 1; c = 1;

%t f[x_] := a*x^2 + b*Sin[x]; g[x_] := c

%t Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, -.96, -.95}, WorkingPrecision -> 110]

%t RealDigits[r] (* A199061 *)

%t r = x /. FindRoot[f[x] == g[x], {x, .50, .51}, WorkingPrecision -> 110]

%t RealDigits[r] (* A199062 *)

%Y Cf. A198866.

%K nonn,cons,changed

%O 0,1

%A _Clark Kimberling_, Nov 02 2011