Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Dec 08 2024 10:19:15
%S 2,26,242,2186,19682,177146,1594322,14348906,129140162,1162261466,
%T 10460353202,94143178826,847288609442,7625597484986,68630377364882,
%U 617673396283946,5559060566555522,50031545098999706,450283905890997362
%N a(n) = 3*9^n-1.
%H Vincenzo Librandi, <a href="/A198960/b198960.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (10,-9).
%F a(n) = 2*A096053(n).
%F a(n) = 9*a(n-1)+8, n>0.
%F a(n) = 10*a(n-1)-9*a(n-2), n>1.
%F G.f.: 2*(1 + 3*x)/(1 - 10*x + 9*x^2). - _Vincenzo Librandi_, Jan 03 2013
%t CoefficientList[Series[2*(1 + 3*x)/(1 - 10*x + 9*x^2), {x, 0, 30}], x] (* _Vincenzo Librandi_, Jan 03 2013 *)
%t LinearRecurrence[{10,-9},{2,26},30] (* _Harvey P. Dale_, Dec 07 2024 *)
%o (Magma) [3*9^n-1: n in [0..20]];
%K nonn,easy,changed
%O 0,1
%A _Vincenzo Librandi_, Nov 01 2011