login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = (1 + x*A(x))*(1 + x^3*A(x)^3).
28

%I #47 Feb 21 2020 07:00:19

%S 1,1,1,2,6,16,39,99,271,763,2146,6062,17359,50337,147057,431874,

%T 1275273,3786649,11298031,33846202,101762937,306997821,929038518,

%U 2819426688,8578433304,26163061776,79970186791,244938841096,751646959402,2310683396056,7115199919151

%N G.f. satisfies: A(x) = (1 + x*A(x))*(1 + x^3*A(x)^3).

%C a(n) is also the number of rooted labeled trees on n nodes such that each node has 0, 1, 3, or 4 children. - _Patrick Devlin_, Mar 04 2012

%H Alois P. Heinz, <a href="/A198951/b198951.txt">Table of n, a(n) for n = 0..600</a>

%F G.f. satisfies:

%F (1) A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * x^(2*k) * A(x)^(2*k) ).

%F (2) A(x) = (1/x)*Series_Reversion(x/((1+x)*(1+x^3))).

%F (3) a(n) = [x^n] (1 + x + x^3 + x^4)^(n+1) / (n+1).

%F (4) A(x) = exp( Sum_{n>=1} x^n/n * (1-x^2*A(x)^2)^(2*n+1)*Sum_{k>=0} C(n+k,k)^2 * x^(2*k) * A(x)^(2*k) ).

%F D-finite with recurrence: 3*(n+1)*(3*n+2)*(3*n+4)*(119*n^3 - 210*n^2 + 73*n - 6)*a(n) = 2*(6664*n^6 - 1764*n^5 - 11585*n^4 + 426*n^3 + 4129*n^2 - 102*n - 288)*a(n-1) - 18*(n-1)*(1190*n^5 - 910*n^4 - 1937*n^3 + 895*n^2 + 606*n - 216)*a(n-2) + 162*(n-2)*(n-1)*(2*n-3)*(119*n^3 + 147*n^2 + 10*n - 24)*a(n-3). - _Vaclav Kotesovec_, Sep 09 2013

%F a(n) ~ c*d^n/n^(3/2), where d = 1/81*((2144134+520506*sqrt(17))^(2/3)+112*(2144134+520506*sqrt(17))^(1/3)-2036)/(2144134+520506*sqrt(17))^(1/3) = 3.23407602060970245... is the root of the equation -324 + 180*d - 112*d^2 + 27*d^3 = 0 and c = 0.6286981954423757284622435... - _Vaclav Kotesovec_, Sep 09 2013

%F A(1/d) = 370/243 + (3*sqrt(17)/509 - 3070/123687)*(2144134+520506*sqrt(17))^(1/3) + (141*sqrt(17)/2072648 - 129529/503653464)*(2144134+520506*sqrt(17))^(2/3) = 2.053716618436594614948796... - _Vaclav Kotesovec_, Sep 10 2013

%F From _Peter Bala_, Jun 21 2015: (Start)

%F a(n) = 1/(n + 1)*Sum_{k = 0..floor(n/3)} binomial(n + 1,k)* binomial(n + 1,n - 3*k). Applying Maple's sumrecursion command to this formula gives the above recurrence of Kotesovec.

%F More generally, the coefficient of x^n in A(x)^r equals r/(n + r)*Sum_{k = 0..floor(n/3)} binomial(n + r,k)*binomial(n + r,n - 3*k) by the Lagrange-Bürmann formula.

%F O.g.f. A(x) = exp(Sum_{n >= 1} A228960(n)*x^n/n), where A228960(n) = Sum_{k = 0..floor(n/3)} binomial(n,k)*binomial(n,3*k). Cf. A036765, A186241 and A200731. (End)

%e G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 6*x^4 + 16*x^5 + 39*x^6 + 99*x^7 + ...

%e Related expansions:

%e A(x)^3 = 1 + 3*x + 6*x^2 + 13*x^3 + 36*x^4 + 105*x^5 + 292*x^6 + ...

%e A(x)^4 = 1 + 4*x + 10*x^2 + 24*x^3 + 67*x^4 + 200*x^5 + 582*x^6 + ...

%e The logarithm of the g.f. equals the series:

%e log(A(x)) = (1 + x^2*A(x)^2)*x + (1 + 2^2*x^2*A(x)^2 + x^4*A(x)^4)*x^2/2 +

%e (1 + 3^2*x^2*A(x)^2 + 3^2*x^4*A(x)^4 + x^6*A(x)^6)*x^3/3 +

%e (1 + 4^2*x^2*A(x)^2 + 6^2*x^4*A(x)^4 + 4^2*x^6*A(x)^6 + x^8*A(x)^8)*x^4/4 +

%e (1 + 5^2*x^2*A(x)^2 + 10^2*x^4*A(x)^4 + 10^2*x^6*A(x)^6 + 5^2*x^8*A(x)^8 + x^10*A(x)^10)*x^5/5 + ...

%e more explicitly,

%e log(A(x)) = x + x^2/2 + 4*x^3/3 + 17*x^4/4 + 51*x^5/5 + 136*x^6/6 + 393*x^7/7 + 1233*x^8/8 + ...

%p a:= n-> coeff(series(RootOf(A=(1+x*A)*(1+x^3*A^3), A), x, n+1), x, n):

%p seq(a(n), n=0..30); # _Alois P. Heinz_, May 16 2012

%t InverseSeries[ Series[ x/((1 + x)*(1 + x^3)), {x, 0, 31}], x] // CoefficientList[#, x]& // Rest (* _Jean-François Alcover_, Sep 10 2013 *)

%o (PARI) {a(n)=local(A=1/x*serreverse(x/(1+x+x^3+x^4+x*O(x^n)))); polcoeff(A, n)}

%o (PARI) {a(n)=polcoeff((1+x+x^3+x^4+x*O(x^n))^(n+1)/(n+1), n)}

%o (PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n,sum(j=0, m, binomial(m, j)^2*x^(2*j)*(A+x*O(x^n))^(2*j))*x^m/m))); polcoeff(A, n)}

%o (PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x^2*A^2)^(2*m+1)*sum(j=0, n\2, binomial(m+j, j)^2*x^(2*j)*(A^2+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}

%Y Cf. A198953, A007863, A036765, A186241, A200731, A228960.

%K nonn,easy

%O 0,4

%A _Paul D. Hanna_, Oct 31 2011