login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198906
T(n,k) = number of n X k 0..4 arrays with values 0..4 introduced in row major order and no element equal to any horizontal or vertical neighbor.
17
1, 1, 1, 2, 4, 2, 5, 33, 33, 5, 15, 380, 1211, 380, 15, 51, 4801, 50384, 50384, 4801, 51, 187, 62004, 2125425, 6907736, 2125425, 62004, 187, 715, 804833, 89793204, 948656912, 948656912, 89793204, 804833, 715, 2795, 10459180, 3794115705
OFFSET
1,4
COMMENTS
Number of colorings of the grid graph P_n X P_k using a maximum of 5 colors up to permutation of the colors. - Andrew Howroyd, Jun 26 2017
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..378 (terms 1..127 from R. H. Hardin)
EXAMPLE
Table starts
.....1..........1...............2....................5
.....1..........4..............33..................380
.....2.........33............1211................50384
.....5........380...........50384..............6907736
....15.......4801.........2125425............948656912
....51......62004........89793204.........130292546801
...187.....804833......3794115705.......17895005957823
...715...10459180....160319061892.....2457786852894234
..2795..135958401...6774239755817...337564362706067534
.11051.1767426404.286243775060868.46362726246946052884
...
Some solutions with values 0 to 4 for n=6, k=4:
..0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1
..1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0
..0..1..0..2....0..1..0..2....0..1..0..2....0..1..0..2....0..1..0..2
..2..0..2..0....2..0..3..0....2..0..2..3....2..0..1..0....2..0..1..3
..3..2..1..4....0..1..0..4....0..4..0..2....3..2..4..3....0..3..4..2
..2..4..2..1....2..4..3..1....1..3..1..4....1..0..1..2....4..0..1..4
CROSSREFS
Columns 1-7 are A007581(n-2), A198900, A198901, A198902, A198903, A198904, A198905.
Main diagonal is A198899.
Cf. A207997 (3 colorings), A198715 (4 colorings), A222144 (labeled 5 colorings), A198982 (6 colorings), A198723 (7 colorings), A198914 (8 colorings), A207868 (unlimited).
Sequence in context: A085843 A198715 A216663 * A198982 A198723 A198914
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Oct 31 2011
STATUS
approved