login
A198810
Number of closed paths of length n whose steps are 9th roots of unity, U_9(n).
1
1, 0, 0, 18, 0, 0, 2430, 0, 0, 640080, 0, 0, 215488350, 0, 0, 84569753268, 0, 0, 36905812607664, 0, 0, 17358832115127360, 0, 0, 8632718277709807710, 0, 0, 4482588877386712735500, 0, 0, 2409165357084756621531180, 0, 0, 1331700439352817463265831040
OFFSET
0,4
COMMENTS
U_9(n), (comment in article): For each m >= 1, the sequence (U_m(N)), N >= 0 is P-recursive but is not algebraic when m > 2.
LINKS
Gilbert Labelle and Annie Lacasse, Closed paths whose steps are roots of unity, in FPSAC 2011, Reykjavik, Iceland DMTCS proc. AO, 2011, 599-610.
FORMULA
E.g.f.: ( Sum_{n>=0} x^(3*n)/n!^3 )^3. - Paul D. Hanna, Oct 30 2011
PROG
(PARI) {a(n)=n!*polcoeff(sum(m=0, n, x^(3*m)/m!^3+x*O(x^n))^3, n)} /* Paul D. Hanna, Oct 30 2011 */
CROSSREFS
Cf. A006480.
Sequence in context: A008424 A023920 A214359 * A347532 A243911 A289660
KEYWORD
nonn
AUTHOR
Simon Plouffe, Oct 30 2011
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Nov 01 2018
STATUS
approved