login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 4*5^n-1.
1

%I #17 Mar 15 2023 14:16:37

%S 3,19,99,499,2499,12499,62499,312499,1562499,7812499,39062499,

%T 195312499,976562499,4882812499,24414062499,122070312499,610351562499,

%U 3051757812499,15258789062499,76293945312499,381469726562499,1907348632812499

%N a(n) = 4*5^n-1.

%H Vincenzo Librandi, <a href="/A198763/b198763.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-5).

%F a(n) = 5*a(n-1)+4.

%F a(n) = 6*a(n-1)-5*a(n-2), n>1.

%F G.f.: (3 + x)/(1 - 6*x + 5*x^2). - _Vincenzo Librandi_, Jan 04 2013

%t CoefficientList[Series[(3 + x)/(1 - 6*x + 5*x^2), {x, 0, 30}], x] (* _Vincenzo Librandi_, Jan 04 2013 *)

%t NestList[5#+4&,3,30] (* or *) LinearRecurrence[{6,-5},{3,19},30] (* _Harvey P. Dale_, Jul 03 2021 *)

%o (Magma) [4*5^n-1: n in [0..30]]

%Y Cf. A024049, A057651, A081655.

%K nonn,easy

%O 0,1

%A _Vincenzo Librandi_, Oct 30 2011