login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of x>0 satisfying x^2+cos(x)=2.
106

%I #12 Mar 30 2012 18:57:56

%S 1,3,2,5,6,2,2,5,1,8,1,4,7,5,3,6,6,2,3,4,8,3,2,2,9,0,2,9,3,8,7,9,8,7,

%T 4,4,3,3,0,4,5,4,6,7,2,5,6,5,7,6,6,4,9,5,2,6,2,7,4,0,1,8,5,3,2,0,0,8,

%U 9,5,0,6,1,6,5,9,3,0,2,4,6,5,0,3,4,1,1,0,9,7,5,9,7,7,5,7,5,6,7

%N Decimal expansion of x>0 satisfying x^2+cos(x)=2.

%C For many choices of a,b,c, there is a unique x>0 satisfying a*x^2+b*cos(x)=c.

%C Guide to related sequences, with graphs included in Mathematica programs:

%C a.... b.... c..... x

%C 1.... 1.... 2..... A198755

%C 1.... 1.... 3..... A198756

%C 1.... 1.... 4..... A198757

%C 1.... 2.... 3..... A198758

%C 1.... 2.... 4..... A198811

%C 1.... 3.... 3..... A198812

%C 1.... 3.... 4..... A198813

%C 1.... 4.... 3..... A198814

%C 1.... 4.... 4..... A198815

%C 1.... 1.... 0..... A125578

%C 1... -1.... 1..... A198816

%C 1... -1.... 2..... A198817

%C 1... -1.... 3..... A198818

%C 1... -1.... 4..... A198819

%C 1... -2.... 1..... A198821

%C 1... -2.... 2..... A198822

%C 1... -2.... 3..... A198823

%C 1... -2.... 4..... A198824

%C 1... -2... -1..... A198825

%C 1... -3.... 0..... A197807

%C 1... -3.... 1..... A198826

%C 1... -3.... 2..... A198828

%C 1... -3.... 3..... A198829

%C 1... -3.... 4..... A198830

%C 1... -3... -1..... A198835

%C 1... -3... -2..... A198836

%C 1... -4.... 0..... A197808

%C 1... -4.... 1..... A198838

%C 1... -4.... 2..... A198839

%C 1... -4.... 3..... A198840

%C 1... -4.... 4..... A198841

%C 1... -4... -1..... A198842

%C 1... -4... -2..... A198843

%C 1... -4... -3..... A198844

%C 2.... 0.... 1..... A010503

%C 2.... 0.... 3..... A115754

%C 2.... 1.... 2..... A198820

%C 2.... 1.... 3..... A198827

%C 2.... 1.... 4..... A198837

%C 2.... 2.... 3..... A198869

%C 2.... 3.... 4..... A198870

%C 2... -1.... 1..... A198871

%C 2... -1.... 2..... A198872

%C 2... -1.... 3..... A198873

%C 2... -1.... 4..... A198874

%C 2... -2... -1..... A198875

%C 2... -2.... 3..... A198876

%C 2... -3... -2..... A198877

%C 2... -3... -1..... A198878

%C 2... -3.... 1..... A198879

%C 2... -3.... 2..... A198880

%C 2... -3.... 3..... A198881

%C 2... -3.... 4..... A198882

%C 2... -4... -3..... A198883

%C 2... -4... -1..... A198884

%C 2... -4.... 1..... A198885

%C 2... -4.... 3..... A198886

%C 3.... 0.... 1..... A020760

%C 3.... 1.... 2..... A198868

%C 3.... 1.... 3..... A198917

%C 3.... 1.... 4..... A198918

%C 3.... 2.... 3..... A198919

%C 3.... 2.... 4..... A198920

%C 3.... 3.... 4..... A198921

%C 3... -1.... 1..... A198922

%C 3... -1.... 2..... A198924

%C 3... -1.... 3..... A198925

%C 3... -1.... 4..... A198926

%C 3... -2... -1..... A198927

%C 3... -2.... 1..... A198928

%C 3... -2.... 2..... A198929

%C 3... -2.... 3..... A198930

%C 3... -2.... 4..... A198931

%C 3... -3... -1..... A198932

%C 3... -3.... 1..... A198933

%C 3... -3.... 2..... A198934

%C 3... -3.... 4..... A198935

%C 3... -4... -3..... A198936

%C 3... -4... -2..... A198937

%C 3... -4... -1..... A198938

%C 3... -4.... 1..... A198939

%C 3... -4.... 2..... A198940

%C 3... -4.... 3..... A198941

%C 3... -4.... 4..... A198942

%C 4.... 1.... 2..... A198923

%C 4.... 1.... 3..... A198983

%C 4.... 1.... 4..... A198984

%C 4.... 2.... 3..... A198985

%C 4.... 3.... 4..... A198986

%C 4... -1.... 1..... A198987

%C 4... -1.... 2..... A198988

%C 4... -1.... 3..... A198989

%C 4... -1.... 4..... A198990

%C 4... -2... -1..... A198991

%C 4... -2.... 1..... A198992

%C 4... -2... -3..... A198993

%C 4... -3... -2..... A198994

%C 4... -3... -1..... A198995

%C 4... -2.... 1..... A198996

%C 4... -3.... 2..... A198997

%C 4... -3.... 3..... A198998

%C 4... -3.... 4..... A198999

%C 4... -4... -3..... A199000

%C 4... -4... -1..... A199001

%C 4... -4.... 1..... A199002

%C 4... -4.... 3..... A199003

%C Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.

%C For an example related to A198755, take f(x,u,v)=x^2+u*cos(x)-v and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

%e x=1.32562251814753662348322902938798744330...

%t (* Program 1: A198655 *)

%t a = 1; b = 1; c = 2;

%t f[x_] := a*x^2 + b*Cos[x]; g[x_] := c

%t Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, 1.32, 1.33}, WorkingPrecision -> 110]

%t RealDigits[r] (* A198755 *)

%t (* Program 2: implicit surface of x^2+u*cos(x)=v *)

%t f[{x_, u_, v_}] := x^2 + u*Cos[x] - v;

%t t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 3}]}, {u, -5, 4}, {v, u, 20}];

%t ListPlot3D[Flatten[t, 1]] (* for A198755 *)

%Y Cf. A197737, A198414.

%K nonn,cons

%O 1,2

%A _Clark Kimberling_, Oct 30 2011