login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the least x>0 that gives the absolute minimum of f(x)+f(2x)+f(3x), where f(x)=sin(x)-cos(x).
3

%I #5 Mar 30 2012 18:57:56

%S 5,9,4,7,3,0,0,2,9,2,2,8,2,2,7,8,3,1,5,0,1,1,1,5,0,8,4,2,6,0,7,9,7,7,

%T 1,1,8,3,6,3,3,1,5,8,8,4,1,4,9,3,4,4,9,9,6,7,6,2,9,0,9,5,0,6,2,1,8,1,

%U 7,2,9,3,0,6,1,3,8,8,2,5,5,1,1,9,0,3,2,7,0,3,5,0,4,5,0,4,6,6,2

%N Decimal expansion of the least x>0 that gives the absolute minimum of f(x)+f(2x)+f(3x), where f(x)=sin(x)-cos(x).

%C See A198745 for a guide to related sequences.

%e x=5.94730029228227831501115084260797711836331...

%e min=-4.05824487647797618374998236242336948409...

%t f[t_] := Sin[t] - Cos[t]

%t n = 3; s[t_] := Sum[f[k*t], {k, 1, n}]

%t x = N[Minimize[s[t], t], 110]; u = Part[x, 1]

%t v = t /. Part[x, 2]

%t RealDigits[u] (* A198747 *)

%t RealDigits[v] (* A198748 *)

%t Plot[s[t], {t, -2 Pi, 2 Pi}, PlotRange -> {-4.1, 3}]

%Y Cf. A198745.

%K nonn,cons

%O 1,1

%A _Clark Kimberling_, Oct 29 2011