login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 7*4^n-1.
3

%I #25 Apr 17 2024 08:34:18

%S 6,27,111,447,1791,7167,28671,114687,458751,1835007,7340031,29360127,

%T 117440511,469762047,1879048191,7516192767,30064771071,120259084287,

%U 481036337151,1924145348607,7696581394431,30786325577727,123145302310911,492581209243647,1970324836974591

%N a(n) = 7*4^n-1.

%H Vincenzo Librandi, <a href="/A198694/b198694.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-4).

%F a(n) = 4*a(n-1)+3.

%F a(n) = 5*a(n-1)-4*a(n-2), n>1.

%F G.f.: ( 6-3*x ) / ( (4*x-1)*(x-1) ). - _R. J. Mathar_, Oct 30 2011

%F E.g.f.: exp(x)*(7*exp(3*x) - 1). - _Stefano Spezia_, Apr 17 2024

%t 7*4^Range[0,30]-1 (* or *) LinearRecurrence[{5,-4},{6,27},30] (* _Harvey P. Dale_, Nov 14 2018 *)

%o (Magma) [7*4^n-1: n in [0..30]]

%Y Cf. A024036, A097743, A114569, A156760.

%K nonn,easy

%O 0,1

%A _Vincenzo Librandi_, Oct 29 2011