Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jul 07 2016 23:48:50
%S 4,7,11,9,16,12,22,29,14,37,17,24,46,29,56,19,24,67,22,28,79,47,92,21,
%T 24,37,54,106,27,42,121,137,29,53,78,154,32,59,87,172,41,50,191,34,45,
%U 55,72,211,37,42,79,117,232,128,254,39,94,277,42,63,102,301
%N Consider triples a<=b<c where (a^2+b^2-c^2)/(c-a-b) = -1, ordered by a and then b; sequence gives c values.
%C The definition can be generalized to define Pythagorean k-triples a<=b<c where (a^2+b^2-c^2)/(c-a-b)=k, or where for some integer k, a(a+k) + b(b+k) = c(c+k). See A198453 for more about Pythagorean k-triples.
%D A. H. Beiler, Recreations in the Theory of Numbers, Dover, New York, 1964, pp. 104-134.
%H Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Pythag/pythag.html">Pythagorean Triples and Online Calculators</a>
%e 3*2 + 3*2 = 4*3
%e 4*3 + 6*5 = 7*6
%e 5*4 + 10*9 = 11*10
%e 6*5 + 7*6 = 9*8
%e 6*5 + 15*14 = 16*15
%o (True BASIC)
%o input k
%o for a = (abs(k)-k+4)/2 to 40
%o for b = a to (a^2+abs(k)*a+2)/2
%o let t = a*(a+k)+b*(b+k)
%o let c =int((-k+ (k^2+4*t)^.5)/2)
%o if c*(c+k)=t then print a; b; c,
%o next b
%o print
%o next a
%o end
%Y Cf. A103606, A198453-A198469.
%K nonn
%O 1,1
%A _Charlie Marion_, Dec 19 2011