login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198455 Consider triples a<=b<c where (a^2+b^2-c^2)/(c-a-b) =1, ordered by a and then b; sequence gives b values. 2
2, 5, 9, 6, 14, 9, 20, 27, 10, 35, 13, 21, 44, 26, 54, 14, 20, 65, 17, 24, 77, 44, 90, 14, 18, 33, 51, 104, 21, 38, 119, 135, 22, 49, 75, 152, 25, 55, 84, 170, 35, 45, 189, 26, 39, 50, 68, 209, 29, 35, 75, 114, 230, 125 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The definition can be generalized to define Pythagorean k-triples a<=b<c where (a^2+b^2-c^2)/(c-a-b)=k, or where for some integer k, a(a+k) + b(b+k) = c(c+k).

If a, b and c form a Pythagorean k-triple, then na, nb and nc form a Pythagorean nk-triple.

A triangle is defined to be a Pythagorean k-triangle if its sides form a Pythagorean k-triple.

If a, b and c are the sides of a Pythagorean k-triangle ABC with a<=b<c, then cos(C) = -k/(a+b+c+k) which proves that such triangles must be obtuse when k>0 and acute when k<0.  When k=0, the triangles are Pythagorean, as in the Beiler reference and Ron Knottā€™s link.

For all k, the area of a Pythagorean k-triangle ABC with a<=b<c equals sqrt((2ab)^2-(k(a+b-c))^2))/4.

The definition amounts to saying that T_a+T_b=T_c where T_i denotes a triangular number (A000217). - N. J. A. Sloane, Apr 01 2020

REFERENCES

A. H. Beiler, Recreations in the Theory of Numbers, Dover, New York, 1964, pp. 104-134.

LINKS

Table of n, a(n) for n=1..54.

Ron Knott, Pythagorean Triples and Online Calculators

J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, Three Cousins of Recaman's Sequence, arXiv:2004:14000 [math.NT], April 2020.

EXAMPLE

2*3 + 2*3 = 3*4

3*4 + 5*6 = 6*7

4*5 + 9*10 = 10*11

5*6 + 6*7 = 8*9

5*6 + 14*15 = 15*16

6*7 + 9*10 = 11*12

PROG

(True BASIC)

input k

for a = (abs(k)-k+4)/2 to  40

for b = a to (a^2+abs(k)*a+2)/2

  let t = a*(a+k)+b*(b+k)

   let c =int((-k+ (k^2+4*t)^.5)/2)

    if c*(c+k)=t then print a; b; c,

next b

print

next a

end

CROSSREFS

Cf. A000217, A156681, A198454-A198469, A333530, A333531.

Sequence in context: A065225 A175640 A204913 * A339174 A018878 A021389

Adjacent sequences:  A198452 A198453 A198454 * A198456 A198457 A198458

KEYWORD

nonn

AUTHOR

Charlie Marion, Oct 26 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 09:20 EDT 2022. Contains 353741 sequences. (Running on oeis4.)