login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198411
a(n)= (4^(2^n) + 2^(2^n) + 1)/7.
0
1, 3, 39, 9399, 613576119, 2635249154000645559, 48611766702991209068831621643639680439, 16541727033902313631938712144098272550515752433223071786131565516477842550199
OFFSET
0,2
COMMENTS
Let b(n) = 4^(2^n) + 2^(2^n) + 1, then b(n+1) = b(n)^2 - 2(8^(2^n) + 4^(2^n)+ 2^(2^n) ) == 1 + 4^(2^n)+ 2^(2^n)= b(n) == 0 (mod 7).
The next term (a(8)) has 154 digits. - Harvey P. Dale, Sep 13 2020
EXAMPLE
a(2) = (4^(2^2) + 2^(2^2) + 1)/7 = 273/7 = 39.
MAPLE
for n from 0 to 9 do:x:= (4^(2^n) + 2^(2^n) + 1)/7
: printf(`%d, `, x):od:
MATHEMATICA
Table[(4^(2^n)+2^(2^n)+1)/7, {n, 0, 8}] (* Harvey P. Dale, Sep 13 2020 *)
CROSSREFS
Sequence in context: A188410 A188388 A076628 * A367033 A097421 A180418
KEYWORD
nonn
AUTHOR
Michel Lagneau, Oct 24 2011
STATUS
approved