login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Divisors of 196560.
2

%I #28 Jul 01 2024 20:15:29

%S 1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,18,20,21,24,26,27,28,30,35,36,39,

%T 40,42,45,48,52,54,56,60,63,65,70,72,78,80,84,90,91,104,105,108,112,

%U 117,120,126,130,135,140,144,156,168,180,182,189,195,208,210,216,234,240,252,260,270,273,280,312,315,336,351,360,364,378,390,420,432,455

%N Divisors of 196560.

%C 196560 is the kissing number of the Leech lattice (cf. A008408). It is a famous number in the "Moonshine" investigations.

%H N. J. A. Sloane, <a href="/A198343/b198343.txt">Table of n, a(n) for n = 1..160</a>

%H Eiichi Bannai and N. J. A. Sloane, <a href="http://dx.doi.org/10.4153/CJM-1981-038-7">Uniqueness of certain spherical codes</a>, Canad. J. Math. 33 (1981), no. 2, 437-449.

%H J. H. Conway and S. P. Norton, <a href="https://doi.org/10.1112/blms/11.3.308">Monstrous Moonshine</a>, Bull. Lond. Math. Soc. 11 (1979), no. 3, 308-339.

%H A. M. Odlyzko and N. J. A. Sloane, <a href="https://doi.org/10.1016/0097-3165(79)90074-8">New bounds on the number of unit spheres that can touch a unit sphere in n dimensions</a>, J. Combin. Theory Ser. A 26 (1979), no. 2, 210-214.

%H J. G. Thompson, <a href="https://doi.org/10.1112/blms/11.3.352">Some numerology between the Fischer-Griess Monster and the elliptic modular function</a>, Bull. London Math. Soc., 11 (1979), no. 3, 352-353.

%H <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a>

%t Divisors[196560] (* _Paolo Xausa_, Jul 01 2024 *)

%o (PARI) divisors(196560) \\ _Charles R Greathouse IV_, Feb 21 2013

%Y Cf. A008408.

%K nonn,fini,full

%O 1,2

%A _N. J. A. Sloane_, Oct 23 2011, following a suggestion from Mark A. Thomas.