login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Suppose n has prime factorization n = p1^a1 * p2^a2 * ... * pk^ak. Then a(n) = (-1)^(n1 + n2 + ... + nk) if all the ai are ni^2 and a(n) = 0 otherwise.
3

%I #44 Nov 09 2023 08:53:16

%S 1,-1,-1,0,-1,1,-1,0,0,1,-1,0,-1,1,1,1,-1,0,-1,0,1,1,-1,0,0,1,0,0,-1,

%T -1,-1,0,1,1,1,0,-1,1,1,0,-1,-1,-1,0,0,1,-1,-1,0,0,1,0,-1,0,1,0,1,1,

%U -1,0,-1,1,0,0,1,-1,-1,0,1,-1,-1,0,-1,1,0,0,1,-1,-1,-1,1,1,-1,0,1,1,1,0,-1,0,1,0,1,1,1,0,-1,0,0,0,-1,-1,-1,0,-1

%N Suppose n has prime factorization n = p1^a1 * p2^a2 * ... * pk^ak. Then a(n) = (-1)^(n1 + n2 + ... + nk) if all the ai are ni^2 and a(n) = 0 otherwise.

%C Differs from A219009 at n=32, 96, 160, 224, 243, 256, 352, ... - _R. J. Mathar_, May 28 2016

%H Antti Karttunen, <a href="/A197774/b197774.txt">Table of n, a(n) for n = 1..10000</a>

%H Mathematics StackExchange, <a href="http://math.stackexchange.com/questions/73354/two-dirichlets-series-related-to-the-divisor-summatory-function-and-to-the-riem">Two Dirichlet's series related to the Divisor Summatory Function and to the Riemann's zeta-function</a>.

%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.

%F Multiplicative with a(p^e) = (-1)^sqrt(e) if e is a square, 0 otherwise. - _Franklin T. Adams-Watters_, Oct 18 2011

%F From _Amiram Eldar_, Nov 09 2023:

%F a(n) = (-1)^A001222(n) if n is in A197680 and 0 otherwise.

%F Limit_{m->oo} (1/m) * Sum_{k=1..m} abs(a(k)) = 0.64111516... (A357016). (End)

%e From _Michael De Vlieger_, Jul 24 2017: (Start)

%e a(5) = -1 since 5^1 has an exponent 1 that is a perfect square, thus (-1)^sqrt(1) = -1.

%e a(6) = 1 since 6 = 2^1 * 3^1; both exponents are perfect squares thus (-1)^sqrt(1) * (-1)^sqrt(1) = -1 * -1 = 1.

%e a(12) = 0 since 12 = 2^2 * 3^1. One exponent (1) is a perfect square but the other (2) is not, thus 0 * (-1)^sqrt(1) = 0.

%e (End)

%p A197774 := proc(n)

%p local a,pf,e ;

%p a := 1 ;

%p for pf in ifactors(n)[2] do

%p e := pf[2] ;

%p if issqr(e) then

%p a := a*(-1)^sqrt(e) ;

%p else

%p a := 0 ;

%p end if;

%p end do;

%p a;

%p end proc: # _R. J. Mathar_, May 28 2016

%t Table[If[n == 1, 1, Apply[Times, FactorInteger[n] /. {p_, e_} /; p > 0 :> If[IntegerQ@ Sqrt@ e, (-1)^Sqrt@ e, 0]]], {n, 105}] (* _Michael De Vlieger_, Jul 24 2017 *)

%o (PARI) A197774(n) = { my(f=factor(n)[, 2]); prod(i=1, #f, if(issquare(f[i]),(-1)^sqrtint(f[i]),0)); }; \\ _Antti Karttunen_, Jul 24 2017

%Y Cf. A001222, A197680, A219009, A357016.

%K sign,easy,mult

%O 1

%A _A. Neves_, Oct 18 2011

%E More terms from _Antti Karttunen_, Jul 24 2017