%I #33 Nov 08 2024 07:56:40
%S 0,0,6,7,9,7,1,6,18,17,30,11,25,30,24,46,64,16,18,4,29,66,95,11,10,9,
%T 8,64,118,77,136,15,139,64,105,9,153,167,93,4,144,180,67,179,133,51,
%U 145,130,168,41,25,163,51,42,43,100,162,212,235,2,98,232,22
%N Fermat-Wilson remainders: Fermat-Wilson quotients A197633 of non-Wilson primes p modulo p.
%C a(n) = 0 iff the n-th non-Wilson prime is a Wieferich-non-Wilson prime A197635. For example a(1) = a(2) = 0, so the 1st and 2nd non-Wilson primes 2 and 3 are Wieferich-non-Wilson primes. The next one is 14771, which is the 1728th non-Wilson prime, so the next zero in the sequence occurs at a(1728) = 0.
%H Jonathan Sondow, <a href="http://arxiv.org/abs/1110.3113">Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771</a>, in Proceedings of CANT 2011, arXiv:1110.3113
%H Jonathan Sondow, <a href="http://link.springer.com/chapter/10.1007%2F978-1-4939-1601-6_17">Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771</a>, Combinatorial and Additive Number Theory, CANT 2011 and 2012, Springer Proc. in Math. & Stat., vol. 101 (2014), pp. 243-255.
%F a(n) = A197633(n) mod A197636(n).
%F a(n) = ((((p-1)!+1)/p)^(p-1)-1)/p mod p, where p is the n-th non-Wilson prime.
%e The 3rd non-Wilson prime is 7, and A197633(3) = 170578899504 == 6 (mod 7), so a(3) = 6.
%t nmax = 63; nonWilsonQ[p_] := Mod[((p-1)! + 1)/p, p] != 0; nwp = Select[ Prime[ Range[nmax + 2]], nonWilsonQ]; A197633[n_] := With[{p = nwp[[n]]}, ((((p-1)! + 1)/p)^(p-1) - 1)/p]; a[n_] := Mod[A197633[n], nwp[[n]]]; Table[a[n], {n, 1, nmax}] (* _Jean-François Alcover_, Oct 10 2012 *)
%Y Cf. A197633, A197635, A197636.
%K nonn
%O 1,3
%A _Jonathan Sondow_, Oct 16 2011