login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lerch quotients of odd primes: ((Sum_{k=1..p-1} q_p(k)) - w_p)/p, where q_p(k) = (k^(p-1)-1)/p is a Fermat quotient, w_p = ((p-1)!+1)/p is a Wilson quotient, and p is the n-th prime, with n > 1.
6

%I #52 Oct 16 2019 06:19:23

%S 0,13,1356,123229034,79417031713,97237045496594199,

%T 166710337513971577670,993090310179794898808058068,

%U 60995221345838813484944512721637147449,332049278209768881045237587717723153006704,120846039713576242385812868532189241842793944235993733

%N Lerch quotients of odd primes: ((Sum_{k=1..p-1} q_p(k)) - w_p)/p, where q_p(k) = (k^(p-1)-1)/p is a Fermat quotient, w_p = ((p-1)!+1)/p is a Wilson quotient, and p is the n-th prime, with n > 1.

%C Lerch proved that the Lerch quotient of any odd prime is an integer.

%C Is 13 the only Lerch quotient that is itself prime?

%C No other primes below 300,000 digits. - _Charles R Greathouse IV_, Nov 16 2011

%C Proof that a(n) is an integer for n >= 2: Note that ((p-1)!)^(p-1) = Product_{i=1..p-1} (1+i^(p-1)-1) == 1+Sum_{i=1..p-1} (i^(p-1)-1) (mod p^2). Write (p-1)! = kp-1, then ((p-1)!)^(p-1) == 1-(p-1)*kp == kp+1 == (p-1)!+2 (mod p^2). This gives Sum_{i=1..p-1} (i^(p-1)-1) == (p-1)!+1 (mod p^2), or Sum_{i=1..p-1} (i^(p-1)-1)/p == ((p-1)!+1)/p (mod p). - _Jianing Song_, Oct 15 2019

%H Michel Marcus, <a href="/A197630/b197630.txt">Table of n, a(n) for n = 2..75</a>

%H J. B. Dobson <a href="http://arxiv.org/abs/1311.2242">A note on Lerch primes</a>, arXiv:1311.2242 [math.NT], 2014.

%H J. B. Dobson <a href="http://www.integers-ejcnt.org/q51/q51.Abstract.html">A Characterization of Wilson-Lerch Primes</a>, Integers, 16 (2016), A51.

%H M. Lerch, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002260441">Zur Theorie des Fermatschen Quotienten (a^(p-1)-1)/p = q(a)</a>, Math. Ann. 60 (1905), 471-490.

%H J. Sondow, <a href="http://arxiv.org/abs/1110.3113">Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771</a>, in Proceedings of CANT 2011, arXiv:1110.3113 [math.NT], 2011-2012.

%H J. Sondow, <a href="http://dx.doi.org/10.1007/978-1-4939-1601-6_17">Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771</a>, Combinatorial and Additive Number Theory, CANT 2011 and 2012, Springer Proc. in Math. & Stat., vol. 101 (2014), pp. 243-255.

%F a(n) = ((Sum_{k=1..p-1} k^(p-1)) - p - (p-1)!)/p^2, where p is the n-th prime and n >= 2.

%e a(3) = 13 because the 3rd prime is 5 and ((Sum_{k=1..4} q_5(k)) - w_5)/5 = (0 + 3 + 16 + 51 - 5)/5 = 13.

%t f[n_] := Block[{p = Prime[n]}, (Sum[(k^(p - 1) - 1)/p, {k, p - 1}] - ((p - 1)! + 1)/p)/p]; Array[f, 12, 2] (* _Robert G. Wilson v_, Dec 01 2016 *)

%o (PARI) a(n)=my(p=prime(n),m=p-1); sum(k=1,m, k^m,-p-m!)/p^2 \\ _Charles R Greathouse IV_, Oct 18 2011

%Y Cf. A007619, A197631, A197632.

%K nonn

%O 2,2

%A _Jonathan Sondow_, Oct 16 2011