%I #19 Oct 23 2024 00:53:52
%S 1,2,1,2,1,2,0,3,1,2,1,2,0,1,1,4,0,3,0,3,1,1,1,3,0,1,1,1,1,2,0,5,1,0,
%T 1,5,0,0,1,3,1,1,0,3,0,1,0,5,0,1,1,1,1,3,1,3,0,1,0,2,0,0,1,5,1,1,0,1,
%U 1,1,0,6,0,1,1,0,0,2,0,5,1,1,1,2,0,1
%N Number of Abelian groups of order 2n which are isomorphic with the group of units of the ring Z/kZ for some k.
%F a(n) = A101872(n) - A179229(n).
%o (GAP)
%o B:=[]; LoadPackage("sonata");
%o for m in [1..86] do
%o n := 2*m; S:=[];
%o for i in DivisorsInt(n)+1 do
%o if IsPrime(i)=true then
%o S:=Concatenation(S,[i]);
%o fi;
%o od;
%o T:=[];
%o for k in [1..Size(S)] do
%o T:=Concatenation(T,[S[k]/(S[k]-1)]);
%o od;
%o max := n*Product(T); R:=[];
%o for r in [1..Int(max)] do
%o if Phi(r)=n then
%o R:=Concatenation(R,[r]);
%o fi;
%o od;
%o A:=[];
%o for t in [1..NrSmallGroups(n)] do
%o if IsAbelian(SmallGroup(n,t))=true then
%o A:=Concatenation(A,[SmallGroup(n,t)]);
%o fi;
%o od;
%o U:=[];
%o for s in [1..Size(R)] do
%o U:=Concatenation(U,[Units(Integers mod R[s])]);
%o od;
%o V:=[];
%o for v in [1..Size(A)] do
%o for w in [1..Size(U)] do
%o if IsIsomorphicGroup(A[v],U[w])=true then
%o V:=Concatenation(V,[v]);
%o break;
%o fi;
%o od;
%o od;
%o B:=Concatenation(B,[Size(V)]);
%o od;
%o Print(B); # _Miles Englezou_, Oct 22 2024
%Y Cf. A101872, A179229.
%K nonn
%O 1,2
%A _Artur Jasinski_, Oct 14 2011
%E Name corrected by _Andrey Zabolotskiy_, Oct 21 2024
%E Terms a(17) onwards from _Miles Englezou_, Oct 22 2024