%I #12 Dec 28 2015 14:01:39
%S 2,3,5,7,13,17,23,31,37,41,43,47,53,59,67,73,83,89,101,103,137,163,
%T 167,179,197,211,223,239,251,277,331,379,397,431,463,467,521,577,593,
%U 601,613,617,719,809,881,919,967,1091,1123,1129,1237,1249,1289
%N The Riemann primes of the theta type and index 3.
%D The sequence consists of the prime numbers p that are champions (left to right maxima) of the function |theta(p^3)-p^3|, where theta(p) is the Chebyshev theta function.
%H Dana Jacobsen, <a href="/A197299/b197299.txt">Table of n, a(n) for n = 1..85</a>
%H M. Planat and P. Solé, <a href="http://arxiv.org/abs/1109.6489">Efficient prime counting and the Chebyshev primes</a> arXiv:1109.6489 [math.NT]
%o (Perl) use ntheory ":all"; my($max,$f)=(0); forprimes { $f=abs(chebyshev_theta($_**3)-$_**3); if ($f > $max) { say; $max=$f; } } 1000; # _Dana Jacobsen_, Dec 28 2015
%Y Cf. A196669, A197187, A197297, A197298, A197300.
%K nonn
%O 1,1
%A _Michel Planat_, Oct 13 2011
%E More terms from _Dana Jacobsen_, Dec 28 2015